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IEEE OES is involved in all aspects of Oceanic Engineering

B
3}
=
[}
7}
3}
o
2
=
=)
o
<
o
S
(0]
=
=
)
(O]
o
=
<
[%2]
o
x
()
2
©




ORGANIZATION

« INTRODUCTION

- BAYESIAN APPROACH

« SEQUENTIAL BAYESIAN PROCESSOR

- PARTICLE FILTERS (STATE-SPACE)

« OCEAN ACOUSTIC APPLICATION







Bayesian Model-Based Signal Processing:

Statistical signal processing is simply the processing of uncertain
data

When the underlying processes are non-linear and noise
(uncertainty) is non-6Gaussian, then a Bayesian approach enables a
potential solution to the processing problem

The incorporation of sophisticated mathematical models into the
processor enables the extraction of the desired information

Bayesian model-based signal processing is primarily concerned with
the estimation of the underlying posterior distribution governing the
problem incorporating physics-based mathematical models




Bayesian processing is based on PDF estimation
using Bayes' rule, specifically, it:

- is concerned with the estimation of the underlying posterior probability
distribution (of X) based on all of the data (Y) available

Pr{X |Y]

- Applies Bayes' rule to perform the posterior estimation:

PrlY | X |xPr[X]
PriY]

PrX |Y]=

- extracts statistics from the posterior (inference) to solve a variety of
problems (signal enhancement, detection, parameter estimation, etc.).

- enables estimates like the conditional mean which is simply performed by:

X=E(X|Y} = X=[XxPrX|Y]dX
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Bayesian techniques use BAYES' RULE:

Posterior Likelihood Prior

~N L/

PriY | X =x]xPr[X =x]
PriY =y]

T

Evidence/Normalization

Bayes' Rule: | [Pr[X|Y =y]|=

This “simple relationship” is the principal foundation of Bayesian signal
processing both theoretically (derivations) and pragmatically (implementations)
relying on numerical integration or Monte Carlo sampling techniques




Bayesian techniques can be thought of as
converting the prior - posterior

Estimated Distributions

Prior: Pr(X)

Posterior: Pr(X|Y)

Prob(X)

N Vi

X-(random parameter)
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The Bayesian approach to signal processing
problem solving represents:

an alternative simulation-based numerical approach to finding
solutions to complex mathematical problems that cannot
easily be solved otherwise

a powerful means for generm‘in? random samples used in
es'rima‘rin? “posterior” probabili z distributions required for
statistical estimation and therefore signal processing

a class of stochastic MONTE CARLO (MC) computations to
simulate the dynamics of a physical or mathematical systems
capturing their inherent uncertainties

a set of MC techniques that have “recently” evolved in the
signal processing area and are high interest especially in
Bayesian model-based processor (BMBP) problems

11




The Monte Carlo method provides the foundation for
"simulation-based” Bayesian signal processing

The MC method is a stochastic computational technique capable of
efficiently simulating complex systems

MC method evolved in the mid-1940's

It was conceived by Fermi (1930) and Ulam (1945) with the advent
of ENIAC computer, coined and developed by Metropolis, Ulam and
von Neumann (1947)

It has been applied in many areas: computational physics and
biology, chemistry, mathematics, engineering, materials and finance
to name a few

It solves problems in simulation, integration, optimization, inversion
and learning




"Monte Carlo sampling” provides an approximate method
of integration (e.g. average Nile depth) [Frenkel '04]
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Amplitude

Monte Carlo methods rely on samples generated from
the sampling distribution to estimate statistics
(mean, variance, etc.) as demonstrated in this

Gaussian example

Sampling Realization
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Bayesian Model-Based Processing (BMBP) techniques incorporate “a
priori” knowledge of the phenomenology into a processing scheme to
estimate the posterior distribution and extract the desired signal

Phenomenolog
Y Raw Data i .

S Process
Model

Measurement y

< Measurement|
© Model

PDF/PMF Estimate
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The model-based approach to the signal (plane wave) enhancement
and _estimation problems can be cast as:

Plane Wave
Propagationd
//// A x\\ Raw Data

Plane Wave
Model

v

Acoustic

Array --1--->  Array
Model

v

Signal Estimate
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SEQUENTTIAL BAYESIAN PROCESSING:
Particle Filters (PFs):

Monte Carlo techniques obtain random sample-based
representations of the posterior probability distributions

When “real-time” oreraﬁons are required or the underlying
statistics are “nons aﬂonarf’, then sequential MC methods
must be employed to solve the problem

A PF is a "sequential” (Monte Carlo) technique in which the
underlying posterior distribution of interest is characterized by
a set or “cloud” of random samples (particles)

In this sense, a PF is a non-parametric representation of the
posterior in discrete form (probability mass function)

PFs represent the next generation of “processors” that are not
constrained to linear models or Gaussian distributions

19




The posterior distribution can be estimated
using the sequential Bayesian processor (SBP):

Pr[xo|Y0]

Pr{ Xy|Y; | Pr{ Xea|Yeq |

= - = W(t-1t-2)

Pr[xt |Yt]

W(t,t-1)

Pr{ X |Yy |=W(t,t-1)xPr[ X, 4|Y; 4 ]

where the Bayes' operator is defined at each stage by

W(t,t-1):= Pr[y(t)|Yt_1]

Priy®XE) [xPrix@x-1) ] t=

1,---,N

20




A PF is a “sequential” (Monte Carlo) technique in
which the underlying posterior distribution of interest
is characterized by a set or “cloud” of random
samples- - -the particles

IT is an algorithm that (sequentially) propagates and updates the
random samples (particles) drawn from the previous stage to obtain a
set of samples approximately distributed from the next stage

Pr Xe|Ye | =W (t,t-3 X, (t))xPr| X 4|Y; 4 |
A i-th Particle A
where W, (t,t l : (t)) Is the weight (Bayes' c:aperator) and

X; (t) is the ithi— particle at stage (time) t

Next Stage Previous Stage

21
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A “particle” is a random sample

A “swarm” or “cloud” is a group of particles

A particle filter is a processor that has data
on input and estimates the “posterior
distribution” on output

The particles are the “location” parameters
along with their associated weights that
gather in “highest probability regions” to
provide a non-parametric estimate of the
empirical posterior distribution

The resulting "posterior distribution” is
observed through probability mass function
estimation (histogram, kernel density)




PARTICLE FILTERS are sequential MC techniques in which the
underlying posterior distribution of interest is represented by a
“cloud” of random samples (particles) in the state/parameter space
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DYNAMIC PARTICLES LEAD TO A
3D-POSTERIOR SURFACE
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The PF provides a 3D-posterior in the dynamic case
especially for multi-modal problems

X-UPDATED Posterior Distribution (Pr[x(t)|Yt]) State No. 1
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Particle filters have applicability in many areas:

Signal processing Appllcahons

- Image processing and Biology & Biochemistry
segmentation Chemistry
- Model selection Economics & Business

- Tracking and navigation Genomics

Geosciences
Immunology

COmmUNiCG?ions Materials Science
- Channel estimation Physics/Optics

- Blind equalization Pharmacology &

d equal: . Toxicology
- Positioning in wireless Psychiatry/Psychology
networks

Social Sciences
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PFs: advantages and disadvantages:

ADYANTAGES

mAbility to represent arbitrary
densities

mAdaptive focusing on highly
probable regions

mDealing with multi-modal PDFs
(non-Gaussian) noise

s The framework also enables the
inclusion of multiple models

DISADVANTAGES
High computational complexity

It is difficult to determine
optimal number of particles

Number of particles increase
with increasing model dimension

Potential problems: degeneracy
and loss of diversity

The choice of proposal density is
crucial

27




SEQUENTIAL BAYESIAN
STATE-SPACE

PROCESSORS




ayesian approach to the state-space:
definitions

x(t) Azt —1),u(t—1),w(t—1))
y(t) C (z(t), u(t), v(t))

where w and v are the respective process and measurement noise sources with v a
known input. Here A (+) is the nonlinear (or linear) dynamic state transition function
and C (-) the corresponding measurement function. Both conditional probabilistic
distributions embedded within the Bayesian framework are completely specified by
these functions and the underlying noise distributions: Pr(w(¢ — 1)) and Pr(wv(¢)).
That 1s, we have the equivalence

A(x(t—1),u(t—1),w(t—1)) = Pr(x(t)|x(t—1)) < A(z(t)|z(t—1))
C(x(t),u(t),v(t)) = Pr(y@)|z@)) < CyE)=d))
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Bayesian approach to state-space: posteriors

“the prediction recursion charac-
terized by the Chapman-Kolmogorov equation replacing transition probability with

the implied model-based conditional, that is,

Embedded Process Model

AlzB)|zt—1))  xPr(z(t —1)|Yie1)dz(t — 1)

Embedded Measurement Model
Pr(z(t)|Y:) = C(y(t)|x())

30




State-space Bayesian processors based on sequential importance
samplers follow easily as:

W) = Wi 1) PO Pl 1)

Now let us recall the general state-space characterization representing
the transition and likelihood probabilities as:

Pr(z(®)]a(t—1)) < A(z@)|c—1))
Pr(y(®)|z(t)) < C(y(t)lz(?))

Assuming this is true, then the SSPF recursion becomes

zi(t) ~ qe(t)e(t—1),y@))
N w1y o Cu@®)i(t)) X Az (@)t — 1))
Wity = W DA T et 10,90)
Wz(t) = %
2 Wilt)
and the filtering posterior is estimated by
(t)|Y) ~ ZW t) — xi(t))

Note that as NV, becomes large, in the limit, we have

limy, oo Pr(w(t)|Yy) — Pr(w(t)|Y?)

6-31




The “generic” state-space particle filtering method is

given by:

INITIALIZE:
1
x;(0) — Pr(z(0)); W;(0) = N =L N [sample]
P

IMPORTANCE SAMPLING:

xi(t) ~ A(z(t)|z;(t — 1)) [state transition]
State-space transition model
Ax(t)|xi(t —1)) = A(x(t —1),u(t —1),wi(t —1)); w; ~ Pr(w;(t)) [transition]
Weight Update:

C(y@)|zi(t) x A(z(@)|z:(t — 1))
q (x(t)]x(t —1),y(1))

Measurement likelihood model

Wi(t) = Wi(t — 1) x

[weights]

C(yt)|xi(t) = C (x(t), u(t),v(t)); v ~ Pr(v(t)) [likelihood)
Weight normalization
Wi(t)
W;(t) =
YT

DISTRIBUTION:

Pr(z(t)|Y};) ~ Zp Wi(6)d(x(t) — x;4(t)) [posterior distribution]
i—1

32




Importance distributions provide the key:
“transition prior” (Gordon et. al. '93)

Another choice for an importance distribution is the transition prior. This prior
is defined in terms of the state-space representation by A(z(t)|x(t—1)) — A(z(t—
1),u(t—1),w(t—1)) which is dependent on the known excitation and process noise
statistics. It 1s given by

Gprior(x(t)|(t — 1), Y:) — Pr(z(t)|z(t — 1))

Substituting this choice into the weights gives

W) = W) LS Ot D) 1) ey o))

BOOTSTRAP ESTIMATOR

33




[ INITIALIZE ] | STATE-SPACE SIR ALGORITHM |

DATA

3

{ki (t—1),Wi (t —1)}

PREDICT

A(X() | x(t-1))

y(t)

:

HOWO) = [PXOM]

UPDATE

C(y®[x®)

esample;

OWO) => PrxQ]Y]

RESAMPLE
X (t) = % (t)

W, (t) = W; (t)

[

»

OUTPUT

B @

OWWO] = PrxmN]

— |Pr| x(t-1)|Y, 4 |
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PROBLEM: Particles deplete in number (degenerate)
to a single particle due to the increased variance in
each step: therefore,

The particles must be “rejuvenated” or equivalently resampled

Resampling inhibits the depletion problem, but increases the
uncertainty (weight variance)

If not implemented properly, it can also increase computational time
extensively (non-parallel)

Resampling is essentially a process that attempts to preserve
particles with large weights (acceptance probabilities) while
discarding those with small weights.

35




Resampling is accomplished by a variety of techniques all with the same
purpose: to generate more particles in the high probability regions
(large weights) and remove the particles with small weights

Importance Sampling PDF Target PDF (HPR)

36
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BOOTSTRAP PF ALGORITHM:

2:(0) ~ Pr(2(0))

INITIALIZE:

W;(0)=— i=1,---,N, [sample]

IMPORTANCE SAMPLING:

xi(t) ~ A(x(t)|x;(t — 1)) — Ax(t — 1), u(t — 1), wi(t —1));  w; ~ Pr(w;(t)) [state transition]

Weight Update

| W) HCy#)|xi(t))

— O (x(t),u(t),v(t)); v~ Pr(v(t)) [weights/likelihood]

Np

[ Pr((1)]Y) ~ >

1=1

Weight normalization

W;(t
Wi(t) = Np—()
>t Wilt)
RESAMPLING:

Z; (t) = X (i’)

DISTRIBUTION:

Wi(t)d(x(t) — 24(t)) [posterior distribution]
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For the PF problem, the Kullback-Leibler divergence
metric is:

For our problem suppose Pr(x(¢)|Y}) is the frue posterior PMF and Pr(x;(t)|Y})
is the estimated (particle) distribution, then the Kullback-Leibler (KL) information
quantity of the true distribution relative to the estimated is defined by

Tk (Pr(x(t)|Yt);Isr(xi)|Y})) = E‘x{ln%}
Npl Pr(x(t)|Y?)

= X Pr(x; (1))

=1

x Pr(x(t)|Y?)

The KL possesses some very useful properties. It satisfies, perhaps its most impor-
tant property from a distribution comparison viewpoint—when the true distribution
and its estimate are or identical), then the information quantity is

Tt (Pr(x(t)m);f?r(x,;(t)m)) =0 < Pr(x(t)[Y;) = Pr(x;(t)[Y:) Vi

This property infers that as the estimated posterior distribution approaches the true
distribution, then the value of the KL approaches zero (minimum).

Our interest lies in comparing two probability distributions to determine “how
close” they are to one another. Even though, the Z;;; does quantify the difference
between the true and estimated distribution, it iS not a distance metric to answer
this question due to its lack of symmetry. However, the Kullback-Leibler divergence
(KD) defined by

Trp (Pr(x(®)|Y:); Pr(x;(t)|Y:) ) = Zwr (Pr(x()|Y:); Pr(x;(t)|Y:)

Tucr (Pr(ei ()] 2); Pr(x(t)|Y7) )

Copyright © James V. Candy, 2015 39



Jio (Pr(Xgaue @) 1Y,); Pr( X e @Y,

PMFs: Meas. No. =1; KLDiv =0.00161155
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BOTH Kullbach-Leibler & Hellinger metrics indicate a good PDF match
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Bayesian model-based techniques incorporate “a priori” knowledge of the
ocean acoustic phenomenology into a processing scheme to estimate the
posterior distribution and therefore extract the desired information

The use of well-founded environmental propagation models coupled to both measurement and

noise (ambient, shipping, etc.) models can be used to enhance critical signals

~

Nﬁ%ise
Raw Data {}ﬁg
|
' |
' |
| 4 Ocean ) BMBE !
_______ ~~1 Acoustic | :
Model Noise :
(Uncertainty) _| __ |
v /Vlode/
Measurement
Model |
%
k Posterior PDF Estimate (signal estimates) /

‘ sequential MC methods




Shallow Ocean Model: Normal-Modes




For a shallow water ocean environment, a normal-mode propagation is
used to characterize sound propagation. Starting with the Helmholtz

PDE, performing separation of variables and approximating range with a

Hankel function, a set of ODEs (in depth) for each mode results:

The standard separation of variables technique and removing
the time dependence leads to a set of ordinary differential
equations, that is, we obtain a “depth only” representation of
the wave equation which is an eigenvalue equation in z with

2

ODE| 56m(2) + £20m)ém(2) =0, m=1,--. M | (D)

whose eigensolutions {¢,,(z)} are the so called modal func-
tions and k. 1s the wave number in the z-direction. These
solutions depend on the sound speed profile, ¢(z), and the
boundary conditions at the surface and bottom as well as the
corresponding dispersion relation given by

2
K= = w2(m) + k2(m), m=1,...,M (2)
c?(2)
where k,-(m) is the horizontal wave number associated with
the m-th mode in the 7 direction and w is the harmonic source
frequency.
By assuming a known horizontal source range a priori,

we obtain a range solution given by the|Hankel function,

45




The corresponding pressure-field measurement using
the Hankel solution is given by:

By assuming a known horizontal source range a priori,
we obtain a range solution given by the Hankel function,
Hy(k,rs) enabling the pressure-field to be represented by

M
p(re,2) = > Bm(rs, 2s)dm (2) 3)

where p is the acoustic pressure; ¢,, is the m*"* modal function
with the modal coefficient defined by

Bm(TS; Zs) = (q HO(RT'TS) Cbm(zs) (4)

for ¢ 1s the source amplitude.

46




The ODEs are discretized using central differences, transformed
to “"state-space” form and are augmented with a parameter (é¢.)
representing the m-th modal coefficient for each mode

D, (205 0n) = Prn(20) = [P (22) Pma(2e) ||Om(2e)]"

With this choice of parameters (modal coefficients) the
augmented state equations for the m-th mode become

Noise
Om1(ze) = Om2(ze-1) +wWmi1(2e-1)  Modal Function
G2 (2¢) —m1(ze—1) + (2 — AzfR2 (M) Pro(ze—1)
wmz(zﬁ—l) Noise
Om (ze—1) + wo,, (20-1) Modal Coefficient
Noise (16)

_l_

9m (Zg)

where we have selected a random walk model (0,,(z) =
wy, (2)) to capture the variations of the modal coeffi-
cients with additive, zero-mean, Gaussian noise of covariance

Ry, we, -

47




The PROBLEM:




The adaptive problem is that of tracking modal functions in a
shallow noisy ocean environment for the Hudson Canyon experiment

HC OCEAN: flat bottom, 3 layers, 73m water column, 2.5m sediment,
23 (46) element vertical array source at 0.5 Km range,

e MA
Z T |

36 m
e,
P 4
0.5 Km s

Source
(50 Hz) 73 m

Hydrophone
Array

00000000001000

Sediment

Subbottom

\ HUDSON CANYON /




The problem is simply: given a varying shallow ocean environment,

“track” the evolving modal functions while adapting to the changes
or more formally ...

GIVEN a set of noisy pressure-field and sound speed mea-
surements varying in depth, [{p(rs, z¢)}, {c(z¢)}| along with
the underlying state-space model of Eqgs. 18, 19 and 20
with unknown modal coefficients, FIND the “best” (mini-
mum error variance) estimate of the modal functions, that 1s,

{Dm(ze|20)}, {Om(2e|ze)};m = 1,---, M and measurements
(enhanced) {p(rs, z¢) }-

50




Particle Filter Design

51




——————————————————————————————————————————————————
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The outputs of the particle filter can be used for:

localization, enhancement, inversion and detection

-------------------------------------------------------------------------------------
- .

| Boundary Value! {9} Forward Measurement :
I ModelSolver L - __ :- ->{ Propagation Model Nolse
| (NMOdE) Model (NMode) (Array) Hace)
|
p(z).c(z)} {®.0.5{
! ¢ Model-Based Processor | ' ___’_
Measurement = = = = = = = = (MBP)

’ \
4 \
: Localization | 1
| l
! |

>= Enhancement | 1
| l
! |
: Inversion |
\ /
A ’
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Particle filtering is used to estimate the posterior distribution
and therefore the MAP modal function estimates while the CM
(conditional mean) is found by MC integration

Np

plo(ze)|P:] = > Wilze)d(d(z) — di(z)) ¥z

1—=1

W;(zs) o< Pr[é;(z)] is the estimated weights at depth zp;
¢i(z¢) is the i-th particle at depth zy;
Pl 1s the estimated empirical distribution;

is the set of batch pressure-field measurements,

P. = {p(z1)---plzr)}.

the maximum a posteriori (MAP) estimate 1s simply
found by locating the location of the particular particle z;(z¢)
corresponding to the maximum of the PMF, that 1s

OMAL(2) = max; p[gi(2)| ]
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The simple BOOTSTRAP PF is used to
estimate the posterior distribution

INITIALIZE

Zp=1Zp4q

DATA

:

PREDICT
Pr(®(z,)| ®(z,_1))

p(rs, 2

—e

NG

UPDATE
Pr(p(rs,z,) | ®(z,))

RESAMPLE
X (t) = % (t)

Wi (t) = W, (t)

[

»

OUTPUT

Thus, we estimate the posterior distribution using a sequen-
tial Monte Carlo approach and construct a bootstrap particle
filter [19]-[24] using the following steps:

Initialize: ®,,(0), wz, ~ N(0, Ryw), Wi(0) = 1/Np;i =
1 N

’---, ps

State Transition: P,,(z¢) = An(ze—1)Pr(ze_1) +
W (2e-1);

Likelihood Probability: Pr[p(rs, z¢)|P(z¢)];

Weights: W;(z¢) = Wi(ze—1) X Pr[®,, (2¢) [P (ze—1)]s

Normalize: W;(z¢) = %
i=1 iz

Resample: (i)i(Zg) = O;(zy);

Posterior: Pr[®,,(z)|P.] = Z,f\;pl Wi(ze)0(p(ze) —

®;(z¢)); and

MAP Estimate: ®M 47 (z) = max; Pr[¢;(z¢)|P.];

MMSE Estimate: ®MMSE () — Nip STV W, (20) i (20)
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EXPERIMENTAL DATA
RESULTS




The Hudson Canyon experiment is:

23-element vertical array with 2.5m pitch

Source at 0.5Km temporal frequency is 50Hz, Depth=36m

5 modes supporting the water column
Noise is assumed AGWN for this test

Length of particle filter, Nparticles=1000
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Predicting the pressure-field from noisy
array measurements is quite reasonable

0

sure-Field Estimation: Ensemble = 100

- ¢
>.’
\

X \

«—— ERROR RN

Depth (m)

O..
* &

DATA ——

~20.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Pressure



Pressure-field posterior PDFs can be approximated reasonably by a unimodal
distribution explaining the good performance of the UKF processor for
enhancement, but the modal estimates tell a different story
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Modal function tracking is reasonable AND
the PF results are 600D (relative to UKF)
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Modal posterior PDFs are not unimodal indicating the
potential failure of unimodal estimators

MODE No. 1: Posterior Distribution
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A cross-sectional slice through the modal PDFs
confirms this representation (multi-modal)
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ADAPTIVITY: Parametric adjustments for
each modal coefficient is shown

Depth (m)
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SUMMARY:

We have presented an overview of Bayesian signal processing
evolving into the design of a particle filter

We have developed a solution to the mode tracking problem
using a particle filter and compared it to the unimodal UKF

We have demonstrated the BOOTSTRAP PF performance on
pressure-field data from the Hudson Canyon and a 23-
element hydrophone array

We have shown that the PF performance for this case is
quite reasonable
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Another important metric for particle filters is based
on the Kullback-Leibler information (KL) defined by:

Suppose Pr(z;) is the true discrete posterior probability distribution and Pr(;)
is the estimated distribution. Then the Kullback-Leibler Information (KL) quantity
of the true distribution relative to the estimated 1s defined by using

N
N N
= ZPr(x,L-) InPr(z;) — ZPr(fEi) In Pr(; )

where we chose log, = In. The KL possesses some very interesting properties
which we state without proof (see [60] for details) such as

1. IKL (Pr(:cz),ﬁr(a“sl)) 2 0

2. Tr (Pr(:cz-); I;r(gﬁi)) — 0 & Pr(z;) = Pr(di) Vi -

3. The negative of the KL is the entropy, Hi (Pr(a:i); PAr(:f:i))

The second property implies that as the estimated posterior distribution approaches
the true distribution, then the value of the KL approaches zero (minimum). Thus,

Copyright © James V. Candy, 2015 68



There are other practical tests that can be performed to
particle filters; however, one of the primary tests is the
Kullback-Leibler divergence (KLD) metric defined by:

However, our interest lies in comparing two probability distributions to deter-
mine “how close” they are to one another. Even though 7 ; does quantify the
difference between the true and estimated distributions, unfortunately it is not a
distance measure due to its lack of symmetry. However, the Kullback divergence
(KD) defined by a combination of Zx,

Trb (Pr(aji); ﬁr(@)) — TrL (Pr(a:@-); I;r(ﬁci)) 4+ Trr (ﬁr(@);Pr(xi))

is a distance measure between distributions indicating “how far” one is from the
other. Consider the following example of this calculation.

Before we close this section, let us see how the KD can be applied to PF de-
sign. Typically, we have a simulation model of the dynamics of the system under
investigation in some form or another, that is, the model can range from a very
detailed “truth model” as discussed in [5] to a simple signal processing represen-
tation (e.g. sinusoids). In any case using the truth model we can generate a ““true
distribution” of the system, say Pr(:r(t)|Y}) and incorporate it into the divergence
criterion. The nonparametric estimate of the posterior distribution Pr (33 (1) |Y{3) pro-
vided by the particle filter can be used in the criterion enabling an estimate that can
be compared to the truth, that is,

jKD(Pr(a:(t)ﬂ/});pr(a:(t)ﬂ/;)) = IKL(Pr(:c(t)ﬂ/});lﬁr(m(t)ﬂ/}))
‘ + Zir (Pr(e®)¥2): Pr(z(0)|Y2) )

Copyright © James V. Candy, 2015
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Consider the following example of resampling emphasizing the
generation of more particles in the high probability regions and
the removal of the small weighted particles

Assume a we have 100 balls (samples) with the following probabilities:
WHITE (W) = 40; Pr(W) = 0.40

BLUE (B)= 25;Pr(B) = 0.25
RED (R)= 10;Pr(R) = 0.10
G)= 2 PrC) = o .

Placing the balls into an urn (individually --> uniform weighting 1/100) and then sampling WITH replacement
we have a NEW or RE-SAMPLED histogram:

—

Original Re-sampled

Making draws (resampling with replacement) implies that the new histogram (PDF) would
Copyright © James V. Candy, 2015 haye g different shape eliminating the smaller probabilities 70



INITIALIZE ]

=l

DATA

-

PREDICT

Pr[®(z,;0) | ®(z,_1;0)]

p(rs’zﬁ)

:

UPDATE

Prip(rs,z,) | ®(z,;0)]

NO

@

RESAMPLE

D;(z,;0) = D;(z,;0)
Wi (z,;0) =W, (z,; ®)

»

OUTPUT

|

NEW SAMPLE?




The BSP implemented in state-space is:

C (yt-1)[x(t-1)) C (yt+1)[x(t+1)

A(X(t)|x(t-1)) A(X(t+D)|x(1))
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The KLD metric can also be applied to the
ensemble and provide average results
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SUBSPACE techniques offer a viable and numerically
robust way to obtain state-space models

MODEL-BASED
PROCESSING

AN APPLIED SUBSPACE IDENTIFICATION APPROACH

JAMES V. CANDY
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In bio-threats, BMBP techniques can incorporate any “a priori”
knowledge of the underlying physics into the processing scheme

Chemistry
Dynamics

Raw Data

Chemistry
Model

Cantilever v
Array Measurement

Cantilever
Model

v

Posterior Distribution/Signal Extraction




For this problem, smart bio-sensors incorporating a micro-
cantilever array can be developed using the BMBP approach

0, t<ton

Raw Data

(C(t) i(IZ/kd J{l_exp[_(kac(t)+k“)(t‘t"” T tou <t <tore nEEEmny

f 1
P t>t
2ky (t—tore) o

Parameter Fit

Y (t) =BT(tO)AG()+Az (t)+v,(t)

T. L BMB Signal
for (=1---,L Noise Extraction

BAYESIAN MODEL-BASED
PROCESSOR
AG(t|t—1)= AG(t—1|t—1) [Free Energy]
Y, (t[t-1) =pB,I(t;0)AG(t|t-1)+A7" (1)

T [Deflection]
gr [AG]|Yy ] [Posterior]
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