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BAYESIAN APPROACH



Bayesian Model-Based Signal Processing:
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• Statistical signal processing is simply the processing of uncertain 
data

• When the underlying processes are non-linear and noise 
(uncertainty) is non-Gaussian, then a Bayesian approach enables a 
potential solution to the processing problem

• The incorporation of sophisticated mathematical models into the 
processor enables the extraction of the desired information

• Bayesian model-based signal processing is primarily concerned with 
the estimation of the underlying posterior distribution governing the 
problem incorporating physics-based mathematical models
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Bayesian processing is based on PDF estimation
using Bayes’ rule, specifically, it:

• is concerned with the estimation of the underlying posterior probability 
distribution (of X) based on all of the data (Y) available 

•Applies Bayes’ rule to perform the posterior estimation:

• extracts statistics from the posterior (inference) to solve a variety of 
problems (signal enhancement, detection, parameter estimation, etc.).

• enables estimates like the conditional mean which is simply performed by:

P̂r[ | ]X Y

 ˆ ˆ ˆX:=E |      X= Pr[ | ]  X Y X X Y dX 

 
   
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
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Bayesian techniques use BAYES’ RULE:

Posterior Likelihood Prior

Evidence/Normalization

This “simple relationship” is the principal foundation of Bayesian signal 
processing both theoretically (derivations) and pragmatically (implementations) 
relying on numerical integration or Monte Carlo sampling techniques

 
Pr[ | ] Pr[ ]

Pr |
Pr[ ]

Y X x X x
X Y y

Y y

=  =
= =

=
Bayes’ Rule:
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Bayesian techniques can be thought of as 
converting the prior → posterior

Posterior: ( )Pr |X Y

Estimated Distributions 

Prior: ( )Pr X

X-(random parameter)

P
ro

b
(X

)
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The Bayesian approach to signal processing 
problem solving represents:

• an alternative simulation-based numerical approach to finding 
solutions to complex mathematical problems that cannot 
easily be solved otherwise

• a powerful means for generating random samples used in 
estimating “posterior” probability distributions required for 
statistical estimation and therefore signal processing

• a class of stochastic MONTE CARLO (MC) computations to 
simulate the dynamics of a physical or mathematical systems 
capturing their inherent uncertainties

• a set of MC techniques that have “recently” evolved in the 
signal processing area and are high interest especially in 
Bayesian model-based processor (BMBP) problems
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The Monte Carlo method provides the foundation for 
“simulation-based” Bayesian signal processing 

• The MC method is a stochastic computational technique capable of 
efficiently simulating complex systems

• MC method evolved in the mid-1940’s

• It was conceived by Fermi (1930) and Ulam (1945) with the advent 
of ENIAC computer, coined and developed by Metropolis, Ulam and 
von Neumann (1947)

• It has been applied in many areas: computational physics and 
biology, chemistry, mathematics, engineering, materials and finance
to name a few

• It solves problems in simulation, integration, optimization, inversion 
and learning
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“Monte Carlo sampling” provides an approximate method 
of integration (e.g. average Nile depth) [Frenkel ‘04]

Numerical Integration

Nile

Monte Carlo Sampling

Nile

Random walk in non-negligible 
region (Nile)
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Bayesian Model-Based Processing (BMBP) techniques incorporate “a 
priori” knowledge of the phenomenology into a processing scheme to 
estimate the posterior distribution and extract the desired signal

Phenomenology

Measurement

Noise

Process
Model

Measurement
Model

Noise
Model

BMBP 

Raw Data 

PDF/PMF Estimate 



The model-based approach to the signal (plane wave) enhancement
and estimation problems can be cast as:

Acoustic
Array

Noise 

Plane Wave   
Model

Array 
Model 

Noise
Model

MBP

Raw Data 

Signal Estimate 

Plane Wave
Propagation



PW-DOA Est.— Classical vs. Model-Based
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SEQUENTIAL BAYESIAN PROCESSORS

(PARTICLE FILTERS)
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SEQUENTIAL BAYESIAN PROCESSING: 
Particle Filters (PFs):

• Monte Carlo techniques obtain random sample-based
representations of the posterior probability distributions 

• When “real-time” operations are required or the underlying 
statistics are “nonstationary”, then sequential MC methods
must be employed to solve the problem

• A PF is a “sequential” (Monte Carlo) technique in which the 
underlying posterior distribution of interest is characterized by 
a set or “cloud” of random samples (particles)

• In this sense, a PF is a non-parametric representation of the 
posterior in discrete form (probability mass function)

• PFs represent the next generation of “processors” that are not
constrained to linear models or Gaussian distributions
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The posterior distribution can be estimated 
using the sequential Bayesian processor (SBP):

( )

( )

1 1

1

                        Pr W , -1 Pr

where the Bayes' operator is defined at each stage by

Pr ( ) ( ) Pr ( ) ( 1)
                        W , -1 : ;   1, ,    

Pr ( )

t t t t

t

t t

t t t t
t t t N

t

− −

−

   =    

    −   = =
  

X Y X Y
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y Y

( )W 1,0 ( )W 1, - 2t t− ( )W , -1t t     

o oPr   X Y 1 1Pr   X Y -1 -1Pr t t  X Y Pr t t  X Y     
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( )

( )

1 1

i

                        

          Pr , -1; ( ) Pr

where W , -1; ( )  is the weight (Bayes' operator) defined earlier and

( ) is the  particle at stage (time) 

   

t t i i t t

i

th
i

X W t t X t X

t t X t

X t i t

− −   =    

−

Y Y

A PF is a “sequential” (Monte Carlo) technique in
which the underlying posterior distribution of interest
is characterized by a set or “cloud” of random
samples---the particles

IT is an algorithm that (sequentially) propagates and updates the 
random samples (particles) drawn from the previous stage to obtain a 
set of samples approximately distributed from the next stage

Next Stage             Previous Stage

i-th Particle



A “particle” is a random sample  

A “swarm” or “cloud” is a group of particles

A particle filter is a processor that has data
on input and estimates the “posterior
distribution” on output

Particle 
Filter

ProbabilityData

Particles

Particles

The resulting “posterior distribution” is 
observed through probability mass function
estimation (histogram, kernel density)

The particles are the “location” parameters
along with their associated weights that 
gather in “highest probability regions” to 
provide a non-parametric estimate of the 
empirical posterior distribution

Particles
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PARTICLE FILTERS are sequential MC techniques in which the 
underlying posterior distribution of interest is represented by a 
“cloud” of random samples (particles) in the state/parameter space
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Particle filters have applicability in many areas:

• Signal processing
– Image processing and 

segmentation

– Model selection

– Tracking and navigation

• Communications
– Channel estimation

– Blind equalization

– Positioning in wireless 
networks

• Applications
– Biology & Biochemistry

– Chemistry

– Economics & Business

– Genomics

– Geosciences

– Immunology

– Materials Science

– Physics/Optics

– Pharmacology &                                                                                          
Toxicology

– Psychiatry/Psychology

– Social Sciences
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PFs: advantages and disadvantages:

ADVANTAGES

◼Ability to represent arbitrary
densities

◼Adaptive focusing on highly
probable regions

◼Dealing with multi-modal PDFs 
(non-Gaussian) noise

◼The framework also enables the 
inclusion of multiple models

DISADVANTAGES
• High computational complexity

• It is difficult to determine 
optimal number of particles

• Number of particles increase
with increasing model dimension

• Potential problems: degeneracy
and loss of diversity

• The choice of proposal density is 
crucial
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SEQUENTIAL BAYESIAN

STATE-SPACE

PROCESSORS
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Bayesian approach to the state-space: 
definitions
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Bayesian approach to state-space: posteriors
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State-space Bayesian processors based on sequential importance 
samplers follow easily as:
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The “generic” state-space particle filtering method is 
given by: 



33

Importance distributions provide the key: 
“transition prior” (Gordon et. al. ’93)

BOOTSTRAP ESTIMATOR 
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 ˆˆ ( 1), ( 1)i ix t W t− − 1Pr ( 1) tx t Y − − 

 ˆˆ ( ), ( )i ix t W t 1Pr ( ) tx t Y −  

Pr ( ) tx t Y   ( ), ( )i ix t W t

 ( ), ( )i ix t W t Pr ( ) tx t Y  
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

INITIALIZE

( )y t

Resample?
NO 

1t t +
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PROBLEM: Particles deplete in number (degenerate) 
to a single particle due to the increased variance in 
each step; therefore,

• The particles must be “rejuvenated” or equivalently resampled

• Resampling inhibits the depletion problem, but increases the 
uncertainty (weight variance)

• If not implemented properly, it can also increase computational time 
extensively (non-parallel)

• Resampling is essentially a process that attempts to preserve
particles with large weights (acceptance probabilities) while 
discarding those with small weights.



Resampling is accomplished by a variety of techniques all with the same 
purpose: to generate more particles in the high probability regions 
(large weights) and remove the particles with small weights

36

Resampling 

Importance Sampling PDF Target PDF (HPR) 

Weights 
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RE-
SAMPLE

PREDICT 

RE-
SAMPLE

PREDICT 

 ( ), ( )i ix t W t  ( 1), ( 1)i ix t W t+ +  ˆˆ ( 1), ( 1)i ix t W t+ +

1Pr ( 1) tx t Y − −  Pr ( ) tx t Y   1Pr ( 1) tx t Y + + 
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UPDATE
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 ˆˆ ( 1), ( 1)i ix t W t− −

UPDATE

( )( ) | ( )C y t x t
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BOOTSTRAP PF ALGORITHM:



For the PF problem, the Kullback-Leibler divergence 
metric is:

39Copyright © James V. Candy, 2015



The Kullback-Leibler divergence (KLD) provides a reasonable metric 
for both the state and measurement particle filters (single 
realization)

Copyright © James V. Candy, 2015

( ) ( )( )TRUE MAP
ˆ ˆPr ( ) | ;Pr ( ) |KD t tJ X t Y X t Y



BOTH Kullbach-Leibler & Hellinger metrics indicate a good PDF match
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AN ADAPTIVE PARTICLE FILTERING APPROACH

TO

TRACKING MODES

IN A 

VARYING SHALLOW OCEAN ENVIRONMENT



Bayesian model-based techniques incorporate “a priori” knowledge of the 
ocean acoustic phenomenology into a processing scheme to estimate the 
posterior distribution and therefore extract the desired information

The use of well-founded environmental propagation models coupled to both measurement and 
noise (ambient, shipping, etc.) models can be used to enhance critical signals

Ocean

Sensor 
Array, 
XBTs

Noise

Ocean
Acoustic
Model

Measurement
Model

Noise
(Uncertainty)
Model

BMBP

Raw Data 

Posterior PDF Estimate (signal estimates) 

When statistics are “nonstationary,” then sequential MC methods must 
be employed to solve the problem
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Shallow Ocean Model: Normal-Modes



For a shallow water ocean environment, a normal-mode propagation is 
used to characterize sound propagation. Starting with the Helmholtz 
PDE, performing separation of variables and approximating range with a 
Hankel function, a set of ODEs (in depth) for each mode results:

45

ODE



The corresponding pressure-field measurement using 
the Hankel solution is given by:

46



The ODEs are discretized using central differences, transformed 
to “state-space” form and are augmented with a parameter ( )
representing the m-th modal coefficient for each mode
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Noise
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The PROBLEM:



The adaptive problem is that of tracking modal functions in a 
shallow noisy ocean environment for the Hudson Canyon experiment

HC OCEAN:         flat bottom, 3 layers, 73m water column, 2.5m sediment,

23 (46) element vertical array source at 0.5 Km  range, 

36m depth and 50Hz

Hydrophone
Array 

Sediment

Surface

Source
(50 Hz)

Subbottom

73 m

36 m

0.5 Km

Sound Speed

HUDSON CANYON



The problem is simply: given a varying shallow ocean environment,
“track” the evolving modal functions while adapting to the changes
or more formally …

50
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Particle Filter Design
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Boundary

Value Problem

SOLVER

Particle Filter

ENSEMBLE

Runs

Pre-Process
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Particle Filter
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Raw Data

INITIAL MODEL PARAMETER CALCULATIONS

Parameters

Tune

NO

YES

Model

PROCESSOR EVALUATION

Particle filter design consists of a set of initial 
parameter runs using simulated then actual 
experimental data
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The outputs of the particle filter can be used for: 

localization, enhancement, inversion and detection
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Particle filtering is used to estimate the posterior distribution 
and therefore the MAP modal function estimates while the CM 
(conditional mean) is found by MC integration 
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The simple BOOTSTRAP PF is used to 
estimate the posterior distribution

( )1Pr ( ) | ( )z z − 
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UPDATE   
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( )Pr ( , ) | ( )sp r z z

ˆ( ) ( )
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i i

i i

x t x t

W t W t





INITIALIZE

( , )sp r z

Resample?
NO 

1z z +

YES 

OUTPUT

DATA 
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EXPERIMENTAL DATA 
RESULTS
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The Hudson Canyon experiment is:

• 23-element vertical array with 2.5m pitch

• Source at 0.5Km temporal frequency is 50Hz, Depth=36m

• 5 modes supporting the water column

• Noise is assumed AGWN for this test

• Length of particle filter, Nparticles=1000



Predicting the pressure-field from noisy 
array measurements is quite reasonable
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Pressure-field posterior PDFs can be approximated reasonably by a unimodal 
distribution explaining the good performance of the UKF processor for 
enhancement, but the modal estimates tell a different story
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Modal function tracking is reasonable AND 
the PF results are GOOD (relative to UKF)
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Modal posterior PDFs are not unimodal indicating the 
potential failure of unimodal estimators

MODE No. 5: Posterior Distribution
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A cross-sectional slice through the modal PDFs 
confirms this representation (multi-modal)
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ADAPTIVITY: Parametric adjustments for 
each modal coefficient is shown
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SUMMARY:

• We have presented an overview of Bayesian signal processing 
evolving into the design of a particle filter

• We have developed a solution to the mode tracking problem 
using a particle filter and compared it to the unimodal UKF

• We have demonstrated the BOOTSTRAP PF  performance on 
pressure-field data from the Hudson Canyon and a 23-
element hydrophone array 

• We have shown that the PF performance for this case is 
quite reasonable
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BACK-UPS



Another important metric for particle filters is based 
on the Kullback-Leibler information (KL) defined by:
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There are other practical tests that can be performed to 
particle filters; however, one of the primary tests is the 
Kullback-Leibler divergence (KLD) metric defined by:
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Consider the following example of resampling emphasizing the 
generation of more particles in the high probability regions and 
the removal of the small weighted particles
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Assume a we have 100 balls (samples) with the following probabilities:

                     WHITE    (W) =  40; Pr(W) =  0.40

                            (B) =   25; Pr( )  =  

          

BLUE B

    

0.25

                (R) =   10; Pr( )  =   

                         (G) =     2;  PG r

RED R

REEN G( )  = 

0.10

0.02

Placing the balls into an urn (individually --> uniform weighting 1/100) and then sampling WITH replacement 

we have a NEW or RE-SAMPLED histogram:

Original Re-sampled

Making draws (resampling with replacement) implies that the new histogram (PDF) would 

have a different shape eliminating the smaller probabilities
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The BSP implemented in state-space is:

( )( ) ( 1)x t x t −A ( )( 1) ( )x t x t+A

( )( 1) ( 1)y t x t− −C ( )( ) ( )y t x tC ( )( 1) ( 1)y t x t+ +C

( 1)x t − ( )x t ( 1)x t +

( 1)y t − ( )y t ( 1)y t +

1t − t 1t +



The KLD metric can also be applied to the 
ensemble and provide average results 

PF ENS

PF ENS PF ENS

PF ENS

MEAN

MEDIAN

MEAN

MEDIAN
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There is a textbook on MBSP (classical & 
modern nonlinear approaches & more … )



SUBSPACE techniques offer a viable and numerically 
robust way to obtain state-space models
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In bio-threats, BMBP techniques can incorporate any “a priori” 
knowledge of the underlying physics into the processing scheme
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For this problem, smart bio-sensors incorporating a micro-
cantilever array can be developed using the BMBP approach
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