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Performance of a passive synthetic
aperture in an uncertain ocean environment

n the real world, systems designed to extract signals from noisy measurements are plagued

by errors evolving from constraints of the sensors employed, by random disturbances and

noise, and, probably the most common, by the lack of precise knowledge of the underlying

physical phenomenology generating the process in the first place. Thus, there is a strong

need to incorporate any and all of the a priori knowledge available. Methods capable of
extracting the desired signal from hostile environments require approaches that capture all of
the information available and incorporate it into a processing scheme. This approach is model
based [1], employing mathematical representations of the component processes involved, and
the processor design evolves from the realm of statistical signal processing using a Bayesian
approach. When signals are deeply buried in noise, especially as in ocean acoustics, then pro-
cessing techniques utilizing these representations of the underlying phenomenology must be
employed [2]. Here we develop the Bayesian model-based approach for processing highly uncer-
tain ocean acoustic data.

The Bayesian approach to statistical signal processing includes the next generation of
processors that have recently been realized with the advent of high-speed/high-throughput
computers [3]. A brief tutorial of Bayesian nonlinear statistical signal processing techniques is
presented commencing with an overview of Bayesian techniques and sequential processors [3].
Once the evolving Bayesian paradigm is established, simulation-based methods using sampling
theory and Monte Carlo (MC) realizations are discussed [3]-[11]. Here the usual limitations of
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nonlinear approximations and non-
Gaussian processes prevalent in clas-
sical nonlinear  processing
algorithms (e.g., approximate
Kalman filters) are no longer a
restriction to perform Bayesian pro-
cessing. It is shown how the underly-
ing problem variables are easily
assimilated into the Bayesian con-

IN THE REAL WORLD,
SYSTEMS DESIGNED
TO EXTRACT SIGNALS FROM
NOISY MEASUREMENTS ARE
PLAGUED BY ERRORS
EVOLVING FROM
CONSTRAINTS OF THE
SENSORS EMPLOYED.

row posterior. The final step, after
obtaining the posterior, is to decide on
and extract meaningful statistics yield-
ing the solution of the signal process-
ing problem.

We define the unobserved signal or
equivalently hidden variables as the
set of Ny-vectors, {x(£)},f=0,...,N
and the observables or equivalent

struct. Next, importance sampling

methods are discussed and how they

can be extended to sequential solu-

tions is shown, implemented using Markovian models as their
natural evolution [4]-[6]. With this in mind, the concept of a
particle filter (PF), a discrete nonparametric representation of a
probability distribution, is developed and shown how it can be
implemented in a bootstrap manner using sequential impor-
tance sampling/resampling (SIR) methods to perform statistical
inferences yielding a suite of popular estimators such as the
conditional expectation, maximum a-posteriori, and median fil-
ters [7]-[15].

With the generic bootstrap PF developed, we investigate the
passive synthetic aperture problem from the signal processing
perspective. We briefly define the problem and then develop a
mathematical representation of a towed hydrophone sensor
array in the ocean coupled to targets in random motion. Next,
we develop a pragmatic simulation using this nonlinear space-
time model discussing some of the important intricacies embed-
ded within. We design the bootstrap PF for this problem and
apply it to synthesized hydrophone data.

BAYESIAN APPROACH TO SIGNAL PROCESSING

Modern statistical signal processing techniques evolve directly
from a Bayesian perspective, i.e., they are cast into a probabilistic
framework using Bayes’ theorem as the fundamental construct.
More specifically, the information about a random signal, x(¢),
required to solve a vast majority of estimation/processing prob-
lems is incorporated in the underlying probability distribution
generating the process. For instance, the usual signal enhance-
ment problem is concerned with providing the best (in some
sense) estimate of the signal at time 7 based on all of the data
available at that time. The corresponding distribution provides
that information directly in terms of its underlying statistics.
That is, by calculating the statistics of the process directly from
its underlying distribution an enhanced signal can be extracted
using a variety of estimators as well as evaluated by its set of per-
formance statistics [1], [2].

Bayesian signal processing consists of three steps with the
primary objective of estimating the posterior (after data is avail-
able) distribution governing the signal, x(¢), under investiga-
tion. The first step is gathering the underlying information
(priors) governing evolution. The next step is to convert the
underlying posterior distribution, PAr(x(z‘)lY;), using Bayes’
rule [3] and develop the algorithm for posterior estimation. It
can be thought of as transforming the broad prior to the nar-

measurements as the set of Ny-vec-

tors, {y(£)},t=0,...,N considered

to be conditionally independent of the
signal variables. The goal in sequential Bayesian estimation is to
sequentially estimate the conditional posterior distribution,
Pr(x(0), ..., x(N)|y(0), ..., y(N)). Once the posterior is esti-
mated, then many of the interesting statistics characterizing the
process under investigation can be exploited to extract meaning-
ful information.

We start by defining two sets of random (vector) processes:
X¢ = {x(0), ..., x(¢)} and Y; := {g(0), ..., y(¢)}. Here we can
consider X; to be the set of dynamic random variables or param-
eters of interest and Y; as the set of measurements or observa-
tions of the desired process. We start with Bayes’ theorem for
the conditional distribution as

Pr(Y: X Pr(X
PrXY)) = P’rz;) 20, M

In Bayesian theory, the posterior defined by Pr(X¢|Y;) is decom-
posed in terms of the prior Pr(X;), its likelihood Pr(Yy|X¢), and
the evidence or normalizing factor, Pr(Y;). Each has a particu-
lar significance in this construct.

It has been shown [3], [4] that under Markovian assumptions
the distribution can be expressed, sequentially, as

New Weight old
—
Pr(X¢Y:) = W(t t — 1) x Pr(X¢—11Ye-1), 2)

and the weight is defined by

W(t, t — 1) — [Pr(y(i)lx(z‘)) X Pr(x(l‘)|x(t_ 1))] .

Pr(y(O)|Ye-1)

This result is satisfying in the sense that we need only know
the posterior distribution at the previous stage, £ — 1, scaled by
a weighting function to sequentially propagate the posterior to
the next stage. Even though this expression provides the full
posterior solution, it is not physically realizable unless the dis-
tributions are known in closed form and the underlying multi-
ple integrals or sums can be analytically determined. In fact, a
more useful solution is the marginal posterior distribution [3],
[4] given by the update recursion as
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Posteri Likelihood Prior
osterior
o Pry@®|x(d)) x Prx(@)[Ye-1)
p Yy =
r(x(6)[Y2) Pry (DY) ; ©))
—————
Evidence

where we can consider the update or filtering distribution as a
weighting of the prediction distribution as in the full case above,
ie.,

Update
Prx(H)1Ye) = Wy(t, £ — 1) x Pr(x(£)[Ye-1), 4)

Weight Prediction

where the weight in this case is defined by

Pr(y()|x(?))

Wyt t—1) = ——————.
“ Pr(y(£)|Yz-1)

We summarize the sequential Bayesian processor in Table 1.

These two sequential relations form the theoretical foundation

of many of the sequential PF designs.

MONTE CARLO APPROACH

MC methods are stochastic computational algorithms capable of
efficiently simulating highly complex systems. Historically,
motivated by games of chance and encouraged by the develop-
ment of the first electronic computer, the MC approach was con-
ceived by Ulam (1945), developed by Ulam and von Neumann
(1947), and coined by Metropolis (1949). It evolved in the 1940s
during the Manhattan project by scientists investigating calcula-
tions for atomic weapon designs [6]. The method evolved from
such areas as computational physics, biology, chemistry, mathe-
matics, engineering, materials, and finance, to name a few. MC
methods offer an alternative approach to solving classical
numerical integration and optimization problems. It utilizes
Markov chain theory as its underlying foundation, establishing
the concept that through random sampling, the resulting
empirical distribution converges to the desired posterior called
the stationary or invariant distribution of the chain. Markov
chain MC techniques are based on sampling from probability
distributions based on a Markov chain, which is a stochastic
(state-space) system governed by a transition probability, having
the desired posterior distribution as its invariant distribution.
Thus, under certain assumptions, the chain converges to the
desired posterior through proper random sampling as the num-
ber of samples become large (see [4] and [6] for details)—a cru-
cial property.

In signal processing, we are interested in some statistical
measure of a random signal or parameter usually expressed in
terms of its moments. For example, suppose we have some signal
function £(X) with respect to some underlying probabilistic dis-
tribution Pr(X), then a typical measure to seek is its perform-
ance on the average, which is characterized by the expectation

Ex{f(X)} = / £(X)Pr(X)dX. )

[TABLE 1] SEQUENTIAL BAYESIAN PROCESSOR FOR
FILTERING POSTERIOR.

PREDICTION
Prix(t)1Ye—1) = [ Prx(@)Ix(t — 1) x Pr(x(t = DIYe-ndx(t — 1)

UPDATE/POSTERIOR
Prix(e)IYe) = Pr(y(t)Ix (@) x Prix()[Ye—1)/Pr(y ()] Yi-1)

INITIAL CONDITIONS
Pr(x(0)|Yo)

Instead of attempting to use numerical integration techniques,
stochastic sampling techniques known as MC integration have
evolved. The key idea embedded in the MC approach is to repre-
sent the required distribution as a set of random samples rather
than a specific analytic function (e.g., Gaussian). As the number
of samples becomes large, they provide an equivalent (empirical)
representation of the distribution, enabling moments to be esti-
mated directly (inference).

MC integration draws samples from the required distribution
and then forms sample averages to approximate the sought-after
distributions. Thus, MC integration evaluates (5) by drawing
samples, {X(7)} from Pr(X) with ~ defined as drawn from the
designated distribution. Assuming perfect sampling, this pro-
duces the estimated or empirical distribution given by

; 1Y ,
PriX) ~ & 38X =X (),
i=1

which is a probability mass distribution with weights, 1/N and
random variable or location X (7). Substituting the empirical
distribution into the integral gives

R 1 & =
Ex{f(X)} = / fX)Pr(X)dX N;f(X(z)) =7 (6

which follows directly from the sifting property of the delta
function. Here £ is said to be an MC estimate of Ex{f(X)}.

A generalization to the MC approach is known as importance
sampling, which evolves from

I=/ p(x)dx:/ <@) x q(x) dx
X x \g(x)

for / g(x)dx = 1. )

Here g(x) is referred to as the sampling distribution or more
appropriately, the importance sampling distribution, since it
samples the target distribution, p(x), nonuniformly giving
more importance to some values of p(x) than others. We say
that the support of g(x) covers that of p(x), i.e., the samples
drawn from ¢(-) overlap the same region (or more) correspon-
ding to the samples of p(-). The integral in (7) can be estimated
by the following:
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m draw N-samples
. R 1Y .
X (@) ~ g(x) and §(x) ~ N;a(x—X(z))
= compute the sample mean
N
el )
q(x) q(x) N
135 pX (@)
N = gX@)’

Z §(x — X (i))dx
i=1

The art in importance sampling is in choosing the impor-
tance distribution ¢(-), which approximates the target distribu-
tion p(-) as closely as possible. This is the principal factor
effecting performance of this approach, since variates must be
drawn from ¢(x) that cover the target distribution. Using the
concepts of importance sampling, we can approximate the pos-
terior distribution with a function on a finite discrete support.
Since it is usually not possible to sample directly from the poste-
rior, we use importance sampling coupled with an easy to sam-
ple proposal distribution, say q(X;|Y;)—this is the crucial
choice and design step required in Bayesian importance sam-
pling methodology. Therefore, starting with a function of the set
of variables, say /(X;), we would like to estimate its mean using
the importance concept, i.e.,

EUf(X))) = f F(X¢) x Pr(X,Yp) X, ®

where Pr(X¢|Y;) is the posterior distribution.

Using the MC approach, we would like to sample from this
posterior directly and then use sample statistics to perform the
estimation. Therefore, we insert the proposal importance distri-
bution g(X¢|Y;) as before

; PrX1Y))
fit):=E(fXp)} = | fXy)| ————
0 =) = [ roen | TG0

x q(X¢|Yy) dXy. 9)

Now we apply Bayes’ rule to the posterior distribution and
define a weighting function as

~ Pr(X:Y:)  Pr(YiX;) x Pr(X;)
W) := = . 10
O = "4Xiv) = Pr(Yy) x aXa¥o) a0

Unfortunately, W(¢) is not useful because it requires knowledge
of the evidence or normalizing constant Pr(Y;) given by

Pr(Y}) = f Pr(YyIX;) x Pr(X,)dXu. a1

which is usually not available. But by substituting (10) into (9)
and defining a new weight W(¢), we obtain

PY(Ytht)PY(Xt)}
X/ Y)dX,
P(Y)/ e [ gxgvn | IrDa

Pr(Y ) f W) FX)a(XelYy) dX e, (12)

which is simply the expectation of the weighted function
E {W(t)f(X;)} scaled by the normalizing constant. From this
definition of the new weighting function, we have

W()g(XeYe) = Pr(Ye X¢)Pr(Xy). 13

Thus, we can now replace the troublesome normalizing con-
stant of (12) by using (13) to replace the integrand of (11), i.e.,

/A'(t) _ EG{W(t)f(Xt)} . Eq{W(t)f(Xt)}
- Pr(Yp) [ W(HeX Y dX,
Eg{W(t)F(Xs))
= T o 14
EgW(D)} (14)

Now drawing samples from the proposal X4(7) ~ q(X¢|Y?)
and using the MC approach leads to the desired result. That is,
from the perfect sampling distribution, we have that

. 1 ¥ )
qXlYy) ~ N;S(Xt—xmn, (15)

and therefore substituting, applying the sifting property of the
Dirac delta function, and defining the normalized weights

Wi(t)

Wi(t) := ———— for
il Wit
Pr(YiIX:(i)) x Pr(Xu(i))
Wi(t) = , 16
i q(X¢(D)|Yy) 16)
we obtain the final estimate
. N
F(t) = Y Wilt) x F(Xy(i). an

i=1

The importance estimator is biased being the ratio of two sam-
ple estimators [as in (14)], but it can be shown that it asymptoti-
cally converges to the true statistic and the central limit
theorem holds [5], [6]. Thus, as the number of samples increase
(N — o0), an asymptotically optimal estimate of the posterior is

N
Pr(X Ye) & Y Wilt) x 8(Xs — Xi(D)), 18)
i=1

which is the goal of Bayesian estimation. Note that the new
weight, W(#) o« W(¢), where  is defined as “proportional to”
up to a normalizing constant.

The importance distribution can be modified to enable a
sequential estimation of the desired posterior distribution, i.e.,
we estimate the posterior l5r(Xt_1|Yt_1) using importance
weights W(f—1). As a new sample becomes available, we
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estimate the new weights W(¢) lead-
ing to an updated estimate of the pos-
terior PAr(thY;). This means that to
obtain the new set of samples,
Xi(1) ~ q(X¢Yy) sequentially, we
must use the previous set of samples,
Xi_1() ~ q(Xs—11Ys—1). Thus, with
this in mind, the importance distribu-
tion g(X;|Y;) must admit a marginal distribution ¢(X;_1|Y;_1),
implying a Bayesian factorization

qXe|Yy) = q(x(t), Xi—11Yy)
= qXe-11Ye-1) x qx()|Xe-1. V). (19)

This type of importance distribution leads to the desired sequen-
tial solution [7]. Recall the Bayesian solution of (2). Recognizing
the denominator as just the evidence or normalizing distribu-
tion and not a function of X;, we have

Pr(X¢|Yy) o< Pr(y(£)|x(£)) x Pr(x(?)|x(f — 1))
x Pr(Xe1|Ye1). (20)

Substituting this expression for the posterior in the weight rela-
tion, we have

Pr(X;|Yy)

q(X¢elYr)
Pr(x(t)|x(t — 1))

W(t) = = Pr(y()|x(1))

Pr(Xe1lYe1)

X , (21
gx()IXe-1, ) g(Xe-1lYe1)
—
Previous Weight
which can be written simply as
W(t) = Wt —1) x Pr(y(£)x(£)) x Pr(x(£)|x(£— 1)) @)

g ()1 X1, Yr)

giving us the desired relationship—a sequential updating of the
weight at each time-step. These results then enable us to for-
mulate a generic Bayesian sequential importance sampling
algorithm as follows:
m draw samples from the proposed importance distribution:
Xi(8) ~ qx()|Xe—1, Y¢)
m determine the required conditional distributions:
Pr(x;(#)|x(t — 1)), Pr(y(®)lxi(¢))
m calculate the unnormalized weights: W;(¢) with
x(8) = xi(1)
m normalize the weights: W; ()
m estimate the posterior distribution: Pr(X¢Y;) =
§v=1 Wi(t)s(x(t) — xi(2)).
Once the posterior is estimated, then desired statistics evolve directly.

BAYESIAN APPROACH TO THE STATE SPACE
Bayesian estimation relative to the state-space models is based on
extracting the unobserved or hidden dynamic internal variables

MODERN STATISTICAL SIGNAL
PROCESSING TECHNIQUES
EVOLVE DIRECTLY FROM
A BAYESIAN PERSPECTIVE.

(states) from noisy measurement data.
The Markovian state vector with ini-
tial distribution Pr(x(0)) propagates
temporally throughout the state space
according to the conditional proba-
bilistic transition distribution
Pr(x(t)|x(¢ — 1)), while the condi-
tionally independent measurements
evolve from the likelihood distribution Pr(y(¢)|x(¢)). We see
that the dynamic state variable at time f is obtained
through the transition probability based on the previous
state (Markovian property), x(f — 1), and the knowledge of
the underlying conditional probability. Once propagated to
time £, the dynamic state variable is used to update or cor-
rect based on the likelihood probability and the new meas-
urement, y(¢). Symbolically, this evolutionary process is
Xx(¢ = 1) ~ Pr(x()|x(t — 1)); {x(?), y(£)} ~ Pr(y()|x(?)).

The usual model-based constructs of the dynamic state vari-
ables indicate that there is an equivalence between the probabilis-
tic distributions and the underlying state/measurement transition
models. The functional discrete Markovian (state) representation
is given by the models: x(¢) = A(x(t — 1), u(t — 1), w(t — 1))
and y(t) = C(x(t), u(t), v(t)), where w and v are the respective
process and measurement noise sources with  a known input.
Here A(-) is the nonlinear (or linear) dynamic state transition
function and C(-) the corresponding measurement function.
Both conditional probabilistic distributions embedded within
the Bayesian framework are completely specified by these func-
tions and the underlying noise distributions Pr(w(f — 1)) and
Pr(v(t)). That is, we have the equivalence

A(x(t = 1), u(t — 1), w(t — 1)) = Pr(x(t)|x(t — 1))
< A(x(@)|x(t = 1))
Clx(@®), u(t), v(t)) = Pr(y(t)|x(1))
< Cy®)|x). (23)

Thus, the state-space model along with the noise statistics and
prior distributions define the required Bayesian representation or
probabilistic propagation model, defining the evolution of the
states and known inputs through the transition probabilities.
Here, the dynamic state variables propagate throughout the state
space specified by the transition probability (A(x(¢)|x(f — 1)))
using the embedded process model. That is, the unobserved state
at time # — 1 depends on the transition probability distribution
to propagate to the state at time #. Once evolved, the state com-
bines under the corresponding measurement at time # through
the conditional likelihood distribution (C(y(#)|x(¢))) using the
embedded measurement model to obtain the required likelihood
distribution. These events continue to evolve throughout with
the states propagating through the state transition probability
using the process model and the measurements generated by the
states and likelihood using the measurement model.
Analytically, to generate the model-based version of the
sequential Bayesian processor, we replace the transition and
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likelihood distributions with the conditionals of (23). The solu-
tion to the signal enhancement or equivalently state estimation
problem is given by the filtering distribution Pr(x(#)|Ys), which
was solved previously (see Table 1). We start with the prediction
recursion characterized by the Chapman-Kolmogorov equation
[6], replacing transition probability with the implied model-
based conditional, i.e.,

Embedded Process Model
—_—
Pr(x(£)|Ye-1) =/ A(x(®)|x(t - 1))

Prior

—
x Pr(x(t = D)|Ye1) dx(t—1). (24)

Next, we incorporate the model-based likelihood into the poste-
rior equation with the understanding that the process model
has been incorporated into the prediction

Embedded Measurement Model
—_——
Cy()|x(t))

Prediction

—
x Pr(e(OlYeen) [Pry)1Yen. (25)

Pr(x(H)1Yy) =

Thus, we see from the Bayesian perspective that the sequential
Bayesian processor employing the state-space representation of
(23) is straightforward.

Vvl(t) T T T T T T

BAYESIAN PARTICLE FILTERS

Particle filtering is a sequential MC method employing the
sequential estimation of relevant probability distributions using
the concepts of importance sampling and the approximations of
distributions with discrete random measures [7]-[11]. The key
idea is to represent the required posterior distribution by a set
of Np-random samples, the particles, and associated weights,
{xi(t), Wi(t)};i=1,--- ,N, and compute the required MC
estimates. Of course, as the number of samples become very
large, the MC representation becomes an equivalent characteri-
zation of the posterior distribution. Thus, particle filtering is a
technique to implement sequential Bayesian processors by MC
simulation. It is an alternative to approximate Kalman filtering
for nonlinear problems [1], [2], [7]. In particle filtering, contin-
uous distributions are approximated by discrete random meas-
ures composed of these weighted particles where the particles
are actually samples (realizations) of the unknown or hidden
states from the Markovian state-space and the weights are the
associated probability masses estimated using the Bayesian
recursions as shown in Figure 1. From the figure, we see that
associated with each particle x;(¢) is a corresponding weight or
(probability) mass W;(t). Therefore, knowledge of this random
measure {x;(f), W;(t)} characterizes an estimate of the empir-
ical posterior distribution f;r(x(t)|Yt) at a particular instant of
time #. Importance sampling plays a crucial role in state-space
particle algorithm development. Particle filtering does not
involve linearizations around current estimates but, rather,
approximations of the desired distribu-
tions by these discrete measures. In
comparison, the approximate Kalman

filter recursively estimates the condi-

0.06

=1

NP
ﬁ Pr(X; | Y) = ZW(0O(X(D- X(0) | 1

tional mean and covariance that can be
used to characterize the filtering poste-

5,
S W)

1
'
'
...... <

0.02

rior Pr(x(¢#)|Yy) under Gaussian
assumptions [1]. In summary, a PF is a
sequential MC based point mass repre-
sentation of probability distributions. It
only requires a Markovian state-space
representation of the underlying process
to provide a set of particles that evolve at
- each time step leading to an instanta-
neous approximation of the target poste-
rior distribution of the state at time ¢
given all of the data up to that time.
Figure 1 illustrates the evolution of the
posterior at a particular time step. Here
we see the estimated posterior based on
22 particles (nonuniformly spaced), and

\l/ I H
T T
8

Particle Number (Time-Step 68)

[FIG1] PF representation of posterior probability distribution in terms of weights

(probabilities) and particles (samples).

19 20 21 22 Xi(D)

‘ we select the eighth particle and weight
to illustrate the instantaneous approxi-
mation at time ¢ for x; versus
PAr(x(t)lYt). The full posterior over six
time steps is shown in Figure 2, where
each individual time slice is displayed.
The associated maximum a posteriori
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[ W (0]
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‘ T
L | Xvap(f)

Pr(Xi(t) | Y, e

Xmap(ty)

Particle Number | )/},-(t)

4

[FIG2] Ensemble of instantaneous posterior probability distributions in terms of probabilities (weights), particles and time-steps
(Pr(x(t)|Y:) versus X;(t) versus t). MAP inference annotated on ensemble along with the corresponding dynamic estimate, Xyap(t)

(left axis).

(MAP) estimates are illustrated across the ensemble along
with the actual dynamic estimates extracted at each time-
step (left side plot). Thus, statistics are calculated across the
ensemble created over time to provide the inference esti-
mates of the states. For example, the minimum mean-
squared error (MMSE) estimate is easily determined by
averaging over x;(¢), since

Xmmse(t) = f X(H)Pr(x(8)|Yy)dx ~ / x(E)Pr(x(t)|Yy)dx

N,

1 14

= 2 :x(z‘)W,'(z‘)S(x(t) — xi(1))
=1

P
1Y
=N ;Wi(t)xim,

while the MAP estimate is simply determined by finding the

sample corresponding to the maximum weight of x;(¢) across
the ensemble at each time step, i.e.,

Gwap(t) = max{Pr(x(®)|Ye)). (26)

The corresponding state-space PF (SSPF) evolving from this
construct follows directly after sampling from the importance
distribution, i.e.,

xi(t) ~ qx(t)|x(t—1), y(£))
Cy)|xi()) x A(x;(t)|x;(t — 1))

(1) = Wit = 1) x qlxi(O)lxi(E = 1), y(£))

Wi(t)

0 27)
Y Wit

Wit) =

and the filtering posterior is estimated by
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Ny

Pr(x(6)|Yy) = Y Wit) x 8(x(t) — xi(t)). (28
i=1

BOOTSTRAP PARTICLE FILTER

The basic design tool when developing the particle filtering algo-
rithms is the choice of the importance sampling distribution,
g(-). One of the most popular realizations of this approach was
developed by using the transition prior as the importance propos-
al [3]. This prior is defined in terms of the state-space representa-
tion by Ax(H)|x(t—1)) = Alx(t—=1),u(t—1),w(t—1)),
which is dependent on the known excitation and process noise
statistics. It is given by

Gprior (X() |x(£ = 1), Yy) —> Pr(x(¢)|x(f—1))
— A(x(t)|x(t — 1)).

Substituting this choice into the expression for the weights
gives

CyO)|xi(t)) x Ax(t)|x;(£— 1))
Gprior (X(D)|x; (£ — 1), Yz)
= Wit = 1) x C(y(¢)|xi(1)).

Wi(t) = Wit —1) x

Note two properties resulting from this choice of importance
distribution. First, the proposed importance distribution does
not use the most recent observation, y(¢), and second, this
choice is easily implemented and updated by simply evaluating

the measurement likelihood C(y(¢)|x;(¢));i=1,...,N, for
the sampled particle set. These weights require the particles to
be propagated to time £ before the weights can be calculated.

This choice can lead to problems, however, since the
transition prior is not conditioned on the measurement
data, especially the most recent, y(¢). Failing to incorporate
the latest available information from the most recent meas-
urement to propose new values for the states leads to only a
few particles having significant weights when their likeli-
hood is calculated. The transitional prior is a much broader
distribution than the likelihood indicating that only a few
particles will be assigned a large weight. The algorithm will
degenerate rapidly. Thus, the SSPF algorithm takes the same
generic form as before with the importance weights much
simpler to evaluate with this approach. It has been called the
bootstrap PF, the condensation PF, or the survival of the
fittest algorithm [3], [12].

As mentioned, one of the major problems with the impor-
tance sampling algorithms is the depletion of the particles, i.e.,
they tend to increase in variance at each iteration. The degenera-
cy of the particle weights creates a problem that must be resolved
before these particle algorithms can be of any pragmatic use in
applications. The problem occurs because the variance of the
importance weights can only increase in time [3] thereby making
it impossible to avoid this weight degradation. Degeneracy
implies that a large computational effort is devoted to updating
particles whose contribution to the posterior is negligible. Thus,
there is a need to somehow resolve this problem to make the

simulation-based techniques viable. This
requirement leads to the idea of resampling
the particles.

Initialize |

State-Space SIR Algorithm

The main objective in simulation-based
| sampling techniques is to generate inde-

Predict
AX(D) | x(#-1))

{x(t-1), Wi(t-1)}|=>| Prix(t-1)| V1]

pendent identically distributed (i.i.d.) sam-
ples from the targeted posterior distribution
to perform statistical inferences extracting
the desired information. Thus, the impor-
tance weights are quite critical since they

Data | y(f) (X, Wi} = | Prix(9] Vil contain probabilistic information about each
specific particle. In fact, they provide us with
=y Update information about how probable a sample
Cy(1) | x(D) has been drawn from the target posterior [3],
No Fe | 10, WiD} | — | PIIX(D | V] | [4]. Therefore, the TN'e}ghts can'be considered
acceptance probabilities enabling us to gen-
Resampile erate independent (approximately) samples
x{(1) = (1) from the posterior Pr(x(¢)|Y;). The empiri-
Wit) = W(1)

YES

New Sample

cal distribution l5r(x(t)|Yt) is defined over a
set of finite (V,) random measures
{x;(t), Wi(t)}; i =1, ..., Np, approximat-
ing the posterior. Resampling, therefore, can

Output

[FIG3] State-space SIR (bootstrap) particle filtering algorithm structure: initialization,

prediction (state transition), updating (likelihood), resampling.

{xi(#), W0} | ==> | Prix(| Y]

be thought of as a realization of enhanced
particles X;(f) extracted from the original
samples x;(#) based on their acceptance
probability W;(¢) at time ¢, i.e., statistically,
we have
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Pr(x;(¢) = xi(t)) = Wi(t) fori=1,...,N, (29)

or symbolically, Xx(f) = x;(¢), with the set of new particles {x(¢)}
replacing the old set {x;(#)} and = is defined as resampled from.
The fundamental concept in
resampling theory is to preserve par-
ticles with large weights (large proba-

We define the acoustic array space-time processing problem as:

Given a set of noisy pressure-field measurements from a hor-

izontally towed array of L-sensors in motion, find the best
(minimum error variance) estimate
of the target bearing.

ONE OF THE MAJOR

bilities) while discarding those with PROBLEMS WITH THE We use the following nonlinear
small weights. Two steps must occur IMPORTANCE SAMPLING pressure-field measurement model
to resample effectively: 1) a decision, ALGORITHMS IS THE for M monochromatic {plane wave}

on a weight-by-weight basis, must be
made to select the appropriate
weights and reject the inappropriate
and 2) resampling must be performed
to minimize the degeneracy. The overall strategy, when cou-
pled with importance sampling is termed SIR [3], [4]. A rea-
sonable measure of degeneracy is the effective particle sample
size [6] defined by

— Np ~ 1
CEWEXD) Y w2

Negr(£) - <N, (30

and the decision is made by comparing it to a threshold, NVipyresh,
i.e., we use the rejection method [6] to decide whether or not to
resample

Resample
Accept

3 = Nthresh

Neti () = { > Nihresh-

Once the decision is made to resample, a uniform sampling pro-
cedure can be applied removing samples with low importance
weights and multiplying samples with high importance weights,
generating a set of new samples so that Pr(x;({) =
xj()) = Wj(t). The resulting i.i.d. samples are uniform such
that the sampling induces the mapping of
{xi(2), Wi(£)} — {%i(2), Wit)}, Wi(t) = 1/N, Vi. Resampling
decreases the degeneracy problem algorithmically but intro-
duces its own set of problems. Theoretically, after one resam-
pling step, the simulated trajectories are not statistically
independent any longer; therefore, the simple convergence
resulting under these assumptions lose their validity [3]. We
summarize the bootstrap PF algorithm in Table 2 and illustrate
the algorithm in Figure 3.

SYNTHETIC APERTURE PROCESSING

FOR A TOWED ARRAY

Synthetic aperture processing is well known in airborne radar
but not as familiar in sonar [16]-[21]. The underlying idea in
creating a synthetic aperture is to increase the array length by
motion, thereby increasing spatial resolution (bearing) and gain
in signal-to-noise ratio (SNR). It has been shown that for sta-
tionary targets, the motion induced bearing estimates have
smaller variance than that of a stationary array [2], [19]. Here
we extend this to the case of both array and target motion,
resulting in a further increase in SNR.

DEPLETION OF THE PARTICLES.

targets characterized by a corre-
sponding set of temporal frequen-
cies, bearings, and amplitudes,
Hwm}, {0m}, {am}]; ie.,

M
plx, ty) = Z ame]wmtk—]ﬂ(xstk)SIHQm + n(ty), 31

m=1

where  B(x, ) = kox(ty) + vty, ko= (2m/ko) is the
wavenumber, x(#) is the current spatial position along the x-
axis in meters, v is the tow speed in m/s, and n2(#) is the addi-
tive random noise. The inclusion of motion in the generalized
wave number B is critical to the improvement of the process-
ing, since the synthetic aperture effect is actually created
through the motion itself and not simply the displacement.

If we further assume that the single sensor equation above is
expanded to include an array of L-sensors, x — xy,
¢ =1,...,L;then we obtain

M

POxe, ty) = ) ame ot IR 0n 5y (1)

m=1

M
= Y am cos(@mty — B(Xe, ty) SN Ona) + ng(t)
m=1
(32)
[TABLE 2] BOOTSTRAP SIR STATE-SPACE
PARTICLE FILTERING ALGORITHM.
INITIALIZE
Xi(0) ~ Pr(x(0)) w;0) = Nl i=1..., Ny [Sample]

p
IMPORTANCE SAMPLING

Xi(t) ~ Ax(t)|xi(t — 1)); w; ~ Pr(w;(t)) [State Transition]

WEIGHT UPDATE

Wi(t) = Wit — 1) x C(y(t)|xi(t)) [Weights]
WEIGHT NORMALIZATION
Wit) = ,\‘,/V'i [Normalize]
it Wit)
RESAMPLING
If Nett(t) < Nenresh. then%i(t) = x(t) [Resample]

IEEE SIGNAL PROCESSING MAGAZINE [81

JULY 2007

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on January 12, 2010 at 19:30 from IEEE Xplore. Restrictions apply.



since our hydrophone sensors measure the real part of the com-
plex pressure field, the final nonlinear measurement model of
the system can be written in compact vector form as

p(tr) = [ty O] + n(fp), (33)

where p, ¢, n € CE¥1 are the respective pressure-field, meas-
urement and noise vectors and © € RM*1 represents the target
bearings and the corresponding vector measurement model

M
et ©) = Y apmcos(@mty — Bxe, f) sinbpm)
m=1

forte=1,...,L.

Since we model the bearings as a random walk (constants
(® = 0) and noise) emulating random target motion, then an
augmented Markovian state-space model evolves from first dif-
ferences as

Olg) = O(fp—1) +Wo(tx—-1). (34)

Thus, the state-space model is linear with no explicit dynamics,
therefore, the process matrix A = I (identity) and the relations
are greatly simplified.

Now let us see how a PF using the bootstrap approach would
be constructed according to the generic algorithm of Table 2.

For this problem, we assume the additive noise sources are
Gaussian, so we can compare results to the performance of the
approximate processor. We will return to our original discrete
notation ¢, — ¢+ 1 for the sampled-data representation.

BAYESIAN SEQUENTIAL PROCESSOR DESIGN

Let us cast this problem into the sequential Bayesian frame-
work, i.e., we would like to estimate the instantaneous posterior
filtering distribution lir(x(z‘) |Y;) using the PF representation to
be able to perform inferences and extract the target bearing esti-
mates. Therefore, for the Bayesian processor and our problem,
we have that the state transition probability is given by
(O — x(1))

Pr(x(H)lx(t = 1)) — A@x(H)]x(t - 1))
~N@©@) :a[®( — DI, Ru,,w,).

or in terms of our state transition (bearings) model, we have

O) =alO¢—-D]+ws(t-1)=0¢—-1) +wy(t—1)
for Pr(wa(£)) ~ N0, Ry,uw,)-

The corresponding likelihood is specified in terms of the meas-
urement model (y(¢) — p(¢)) as

Pr(y(®)|x()) — Cy@)|x(#)) ~ N (@) : c[O@)], R (D)),

where we have used the notation z ~ N'(z : m;, R;;) to specify
the Gaussian distribution in random vector z. In terms of our
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[FIG4] Synthetic aperture sonar tracking problem: simulated target motion from initial bearings of 45° and —10° and array

measurements (—10 dB SNR).
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[FIG5] PF bearing estimates: 45° PF bearing (state) estimates and simulated target tracks (EKF, MAP).

problem, we have that

M
InC(y(®)|x(1)) =« — %(Y(f) - mX::l am Cos(wmt

— B(t)sinb,)) R}
M
: (y(z‘) — Y amcos(@nt — ﬂ(t)sinem))
m=1

with « a constant, g € RE¥1, and B(¢) := [B(x1, b)]...
|B(xz,, t)]’, the dynamic wavenumber expanded over the array.
Thus, the SIR algorithm becomes
m draw samples (particles) from the state transition
distribution:

0;(t) ~ N(©(?) : al® (¢ — DI, Ry w,)
we, (1) ~ Prw(?)) ~ N (0, Ruy,w,).
Oi(t) = ©;(t— 1) +wy,(t—1)

m estimate the likelihood, C(y(¢)|®(#)) ~ N (y(t):
c[O)], Ryp(2)) with co(t; ©;) = Y ap cos(mty —
B(xe, t)sin®, ;(¢)) for € =1, ..., L and Oy, ; is the ith-
particle at the mth-bearing angle
m update and normalize
Wit)/ L17 Wilt)

m resample: Negt(Z) < Nihresh

m estimate the instantaneous posterior: ﬁr(@(z‘)lYt) ~
S Wi8O() — (1))

the weight: W;(¢) =

m perform the inference by estimating the corresponding
statistics: (:)ma‘?v(t) =arg max Pr(®@(H)|Y;); Ommse(t) =
E{®(l‘)|3it} =221 0i(OPr@()|Y); Omedian () =
median(Pr(©(£)|Y3))).

NARROWBAND SYNTHETIC APERTURE SIMULATION
Consider the following simulation of the synthetic aperture
using a four-element, linear towed array with two moving tar-
gets with the following parameters:

m Targets: Unity amplitudes with temporal frequency is 50

Hz, wavelength = 30 m, speed = 5 m/s

m Array: four-element linear towed array with 15 m pitch

m PF: Ny = 2 states (bearings), Ny =4 sensors, N = 500

samples, N, = 1, 000 weights

m SNR: —10 dB

m Noise: White Gaussian with Ry, = diag (2.5),

Ry = diag (0.1414); sampling interval 0.005 s

m Initial Conditions: (bearings and uncertainty)

O, = [45° — 10°]/, P, = diag (10~19).

The array simulation was executed as the target moved
according to a random walk specified by the process noise and
sensor array measurements with —10 dB SNR. The results are
shown in Figure 4. In Figure 4(a) we see the noisy synthesized
bearings and in Figure 4(b) we see four noisy sensor measure-
ments at the moving array. The bearing (state) estimates are
shown in Figure 5, where we observe the targets making a vari-
ety of course alterations. The PF is able to track the target
motions quite well while we observe the extended Kalman filter
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[FIG6] PF measurement estimates: four channel hydrophone estimates.

(EKF) [1] unable to respond quickly enough and finally losing
track completely. Both the MAP and MMSE estimates using the
estimated posterior provide excellent tracking. Note that these
bearing inputs would provide the raw data for an XY-tracker
[1]. The PF estimated or filter measurements are shown in
Figure 6. As expected, the PF tracks the measurement data
quite well while the EKF is again in error. Using the usual opti-
mality tests for performance demonstrates that the PF proces-
sor works well, since each measurement channel is zero-mean
and white with the weighted sum square residual (WSSR) sta-
tistic lying below the threshold. This indicates a white innova-
tions sequence, demonstrating the tracking ability of the PF
processor, at least in a classical sense [1]. The instantaneous
posterior distributions for both bearing estimates are shown in
Figure 7. Here we see the Gaussian nature of the bearing esti-
mates generated by the random walk. Clearly, the PF performs
quite well for this problem.

It is also interesting to note how the performance of this
processor changes by changing the number of particles selected
as well as the number of resampling steps required. These steps
are controlled by the threshold (Niyesh), i-e., if Nefr < Nipresh,
resampling occurs; otherwise, it does not. The performance is
quantified by a measure of accuracy (RMS error) and computa-
tional cost (number resampling steps/run). We selected the
number of particles as N, = 1,000, 500, and 250 with corre-
sponding threshold, Npyesh = Np. As expected, in all three
cases, (N, =1000, 500, 250), the minimum root mean-

squared error (RMS) occurred by resampling at every time-step
(Nthresh = NNp) with RMS state-error pairs for each respective N,
given by: (RMS;, RMSy) = (8%, 6%); (8.2%, 6.1%); (8.3%,
6.2%), indicating that the RMS state-error increases by using
fewer and fewer particles and resampling at every time-step.

Next, using N, = 1,000, we varied Nyyesh in 100 particle
increments from 500 down to 100 particles, demanding fewer
resampling steps. The resulting RMS errors for each selected
threshold were, respectively, (Niyesh = 500, 400, 300, 200, 100)
— (RMS1, RMSy) = (8%, 6%); (9%, 6.5%); (10%, 7.8%);
(11%, 8.2%); (14.6%, 14.6%), with corresponding resampling
steps of (NVyesample = 500, 370, 187, 119, 67), clearly demontrat-
ing the tradeoff between accuracy and resampling. So we see by
this analysis that as the number of resampling steps is dimin-
ished (threshold setting), the accuracy decreases but so does
computational cost, as expected. In all cases, except the
Nihresh = 100, the innovations sequence produced by the PF
remained white and zero-mean, classical properties indicating
successful performance [1]. Finally, for the 100 particle thresh-
old, the performance deteriorated, as indicated by the nonwhite
innovations and the increased RMS errors.

SUMMARY

In this article, we have provided an overview of nonlinear statis-
tical signal processing based on the Bayesian paradigm. We
showed that the next-generation processors are well founded on
MC simulation-based sampling techniques. We reviewed the
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[FIG7] PF instantaneous posterior bearing estimates: 45° and —10° targets.

development of the sequential Bayesian processor using the
state-space models. The popular bootstrap algorithm was out-
lined and applied to an ocean acoustic synthetic aperture towed
array target tracking problem to test the performance of a parti-
cle filtering technique.
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