
Environmentally adaptive processing for shallow ocean
applications: A sequential Bayesian approach

J. V. Candya)

Lawrence Livermore National Laboratory, P.O. Box 808, L-151, Livermore, California 94551, USA

(Received 28 December 2014; revised 21 June 2015; accepted 24 July 2015; published online 2
September 2015)

The shallow ocean is a changing environment primarily due to temperature variations in its upper

layers directly affecting sound propagation throughout. The need to develop processors capable of

tracking these changes implies a stochastic as well as an environmentally adaptive design.

Bayesian techniques have evolved to enable a class of processors capable of performing in such an

uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean environment. A

solution to this problem is addressed by developing a sequential Bayesian processor capable of pro-

viding a joint solution to the modal function tracking and environmental adaptivity problem. Here,

the focus is on the development of both a particle filter and an unscented Kalman filter capable of

providing reasonable performance for this problem. These processors are applied to hydrophone

measurements obtained from a vertical array. The adaptivity problem is attacked by allowing the

modal coefficients and/or wavenumbers to be jointly estimated from the noisy measurement data

along with tracking of the modal functions while simultaneously enhancing the noisy pressure-field

measurements. VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4928140]

[ZJM] Pages: 1268–1281

I. INTRODUCTION

The shallow ocean is an uncertain, ever-changing, dis-

persive environment dominated by temperature fluctuations

that alter sound propagation throughout. Environmental var-

iations are created by these fluctuations (sound speed varia-

tions) as well as other disturbances caused by ambient,

shipping, surface noise, and sensor noise such as flow and

instrumentation noise. Temperature variations directly

impact sound speed due to their strong interrelationship,

while internal disturbances can be related to fish sounds

(snapping shrimp, mammal communications). External dis-

turbances are directly related to wind induced wave motion,

shipping noise, and other surface related noises. In all, the

shallow ocean is quite a hostile environment to attempt to

extract meaningful information from directly without sophis-

ticated processing techniques.1 Modeling parametric uncer-

tainties can also affect the processing problem. Thus, a

successful processor would be required to adapt to these var-

iations while simultaneously estimating modal functions that

are necessary for such applications as detection, localization,

tracking, inversion, and enhancement. A solution to this

problem can be accomplished by developing a Bayesian

processor capable of providing a joint solution to the modal

function tracking and environmental adaptivity problem.

The posterior distribution required is multimodal (multiple

peaks) motivating a sequential Bayesian approach. Adaptive

processing can be achieved using a recursive or equivalently

sequential formulation. Sequential processing enables the

realization of such a processor in order to account for

changes especially in a shallow ocean. The processor tracks

these variations by adjusting parameters that are capable of

capturing these changes (nonstationary spatial/temporal var-

iations) thereby mitigating them in the measured data and

enhancing the signals of interest.

Sequential Bayesian processing incorporating propaga-

tion models along with their inherent environmental parame-

ters as well as measurement and noise models offers a

robust, parametrically adaptive approach to solve signal

processing problems in such a nonstationary environment.2

We address the problem of estimating or tracking modal

functions in a hostile shallow ocean while jointly adjusting

(adaptively) the inherent propagation model parameters.3–13

We concentrate on this “parametrically adaptive” approach,

that is, the processor that embeds an ocean acoustic model

into its framework and sequentially estimates both the sig-

nals of interest as well as its embedded physical parame-

ters.14–16 In this way, the processor must solve the joint
signal and parameter estimation problem. For our applica-

tion, we choose the normal-mode (shallow ocean) propaga-

tion model with modal functions and pressure-field as our

signals of interest along with two sets of parameters to be

jointly (adaptively) estimated: the corresponding modal

coefficients or horizontal wavenumbers. Therefore, the per-

formance of the adaptive processors are investigated for two

cases (individually): case (i): the adaptive modal coefficients

and case (ii): the adaptive wavenumber parameters.14–16

More specifically, the acoustic measurements are com-

bined with a set of model parameters usually obtained from

a priori information or a sophisticated normal-mode simula-

tor18 that solves the underlying boundary value problem

(BVP) to extract the initial parameters/states in order to con-

struct the forward propagator and initialize the algorithm.

The algorithms then use the incoming data to update the pa-

rameter set jointly with the acoustic signal processing task

(enhancement). In the following, we define a processora)Electronic mail: candy1@llnl.gov
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whose enhanced states are the estimated modal functions.

Here, we investigate the development of a model-based sig-

nal (modal function/pressure-field) enhancer that embeds a

forward propagator into the processing scheme essentially

mimicking previous model-based efforts that used a class of

linearized processors linearized Kalman filter and extended

Kalman filter (EKF).8,14

We are primarily interested in investigating the applic-

ability of the “next generation” of model-based signal proc-

essing techniques, the particle filter (PF)13 and the unscented

Kalman filter (UKF)17 with the goal of analyzing their per-

formance on pressure-field data obtained from the well-

known Hudson Canyon experiments performed on the New

Jersey shelf.11,13 A PF is a sequential Markov chain Monte

Carlo Bayesian processor capable of providing reasonable

performance for a multimodal (multiple peaked) distribution

problem estimating a non-parametric representation of the

posterior distribution.13 On the other hand, the UKF is a

processor capable of representing any unimodal (single

peaked) distribution using a statistical linearization tech-

nique based on sigma points that deterministically character-

ize the posterior.13

To put this effort in perspective, similar work in this

area has been accomplished previously using a classical,

unimodal processor—the EKF to solve the joint estimation

problem.10,14 Both of these efforts discuss the parametrically

adaptive approach using modal coefficients and wavenum-

bers as the unknown parameters and show that good results

can be obtained for both localization10 and parameter esti-

mation.15 The results of this effort demonstrates that (1) the

“next generation” processors (PF and UKF) are capable of

solving the joint estimation (modes, pressure-field) enhance-

ment problem; (2) multimodal distributions result and can be

mitigated by PF while the UKF is capable of at least produc-

ing reasonable estimates (as the EKF did), but not quite as

good as the PF; and (3) feasible solutions to the joint state

and parameter estimation can be obtained resulting in para-

metrically adaptive processors capable of adjusting to meas-

ured variations in the changing shallow ocean environment.

In order to construct the model-based processor (MBP),

we first characterize the normal-mode model in terms of a

state-space representation enabling a general framework for

signal processing in Sec. II leading to the formulation of the

forward propagators. The design of the MBP for a shallow

ocean acoustic problem is discussed in Sec. III and the

results are given in Sec. IV where we compare the perform-

ance of the PF and UKF for both the modal coefficient and

wavenumber adaptivity problems. We discuss our results in

Sec. V.

II. STATE-SPACE PROPAGATOR

For our ocean acoustic modal function enhancement

problem, we assume a horizontally stratified ocean of depth

h with a known horizontal source range rs and depth zs and

that the acoustic energy from a point source can be modeled

as a trapped wave governed by the Helmholtz equation.1,18

The standard separation of variables technique and removing

the time dependence leads to a set of ordinary differential

equations; that is, we obtain a “depth only” representation of

the wave equation which is an eigenvalue equation in z with

d2

dz2
/m zð Þ þ j2

z mð Þ/m zð Þ ¼ 0; m ¼ 1;…;M; (1)

whose eigensolutions {/m(z)} are the so-called modal func-
tions and jz is the vertical wavenumber in the z-direction;

that is, they are a function of depth. These solutions depend

on the sound speed profile c(z) and the boundary conditions

at the surface and bottom as well as the corresponding dis-
persion relation given by

j2 ¼ x2

c2 zð Þ
¼ j2

r mð Þ þ j2
z mð Þ; m ¼ 1;…;M; (2)

where jr(m) is the horizontal wavenumber (constant) associ-

ated with the mth mode in the r direction and x is the har-

monic source frequency.

By assuming a known horizontal source range a priori,
we obtain a range solution given by the Hankel function,

H0(jrrs), enabling the pressure-field to be represented by

pðrs; zÞ ¼
XM

m¼1

bmðrs; zsÞ/mðzÞ; (3)

where p is the acoustic pressure; /m is the mth modal func-

tion with the modal coefficient defined by

bmðrs; zsÞ :¼ qH0ðjrrsÞ/mðzsÞ; (4)

for (rs, zs) the source position and q its amplitude.

A. State-space model

The depth-only eigen-equation can be transformed to

state-space form by defining the state vector of the mth mode

as

/
m

zð Þ :¼
/m zð Þ

d

dz
/m zð Þ

2
4

3
5 ¼ /m1 zð Þ

/m2 zð Þ

� �
; (5)

leading to the state (vector) equation

d

dz
/

m
zð Þ ¼ Am zð Þ/

m
zð Þ; (6)

for

AmðzÞ ¼
0 1

�j2
z ðmÞ 0

� �
: (7)

Assuming that the ocean acoustic noise can be charac-

terized by additive uncertainties, we can extend this deter-

ministic state equation for the M-modes; that is,

UðzÞ :¼ ½/
1
ðzÞj � � � j/

M
ðzÞ�T leading to the following 2 M-

dimensional Gauss–Markov representation of the model:

d

dz
U zð Þ ¼ A zð ÞU zð Þ þ w zð Þ; (8)
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where w(z) ¼ [w1 w2� � �w2M]T is additive, zero-mean random

noise. The system matrix A(z) is

AðzÞ ¼

A1ðzÞ � � � 0

..

. . .
. ..

.

0 � � � AMðzÞ

2
6664

3
7775; (9)

with the overall state vector given by

UðzÞ ¼ ½/11 /12 j/21 /22j � � � j/M1 /M2�T : (10)

This representation leads to the measurement equations,

which we can write as

pðrs; zÞ ¼ CTðrs; zsÞUðzÞ þ vðzÞ; (11)

where

CTðrs; zsÞ ¼ ½b1ðrs; zsÞ 0j � � � jbMðrs; zsÞ 0�: (12)

The random noise terms w(z) and v(z) can be assumed

Gaussian and zero-mean with respective covariance matri-

ces, Rww and Rvv. The measurement noise [v(z)] can be used

to represent the “lumped” effects of near-field acoustic noise

field, flow noise on the hydrophone, and electronic noise.

The modal noise (w) can be used to represent the

“lumped”uncertainty of sound speed errors, distant shipping

noise, errors in the boundary conditions, sea state effects,

and ocean inhomogeneities that propagate through the ocean

acoustic system dynamics (normal-mode model). These

assumptions, with known model parameters, lead to the opti-

mal solution of the state estimation problem (Kalman

filter).8

Since the array spatially samples the pressure-field dis-

cretizing depth, we choose to discretize the differential state

equations using a central difference approach for improved

numerical stability, that is, assuming uniformly spaced

hydrophones, from Eq. (1) we have

d2

dz2
/m �

/m z‘ð Þ � 2/m z‘�1ð Þ þ /m z‘�2ð Þ
Dz2

‘

; (13)

for Dz‘ :¼ z‘ � z‘–1.

Applying this approximation to Eq. (1) gives

/mðz‘Þ�2/mðz‘�1Þþ/mðz‘�2Þþ�z2
‘j

2
z ðmÞ/mðz‘�1Þ¼0;

where z‘ is the location of the ‘th sensor. Defining the dis-

crete modal state vector as /mðz‘Þ :¼ ½/mðz‘�2Þj/mðz‘�1Þ�T ,

we obtain the following set of difference equations for the

mth mode

/m1ðz‘Þ ¼ /m2ðz‘�1Þ;

/m2ðz‘Þ ¼ �/m1ðz‘�1Þ þ ð2� Dz2
‘j

2
z ðmÞÞ/m2ðz‘�1Þ;

(14)

with each of the corresponding A-submatrices now given by

Amðz‘Þ ¼
0 1

�1 2��z2
‘j

2
z ðmÞ

" #
; m ¼ 1;…;M;

(15)

and

j2
z mð Þ ¼

x2

c2 zð Þ

 !
� j2

r mð Þ: (16)

Substituting this model and combining all of the modes as in

Eq. (9), the following overall Gauss–Markov representation

of the normal-mode process and measurement is

Uðz‘Þ ¼ Aðz‘ÞUðz‘�1Þ þ wðz‘Þ;

pðrs; z‘Þ ¼ CTðrs; zsÞUðz‘Þ þ vðz‘Þ; (17)

and U;w 2 R2M�1; p; v 2 R1�1 for w � Nð0;RwwÞ; v
� Nð0;RvvÞ with Uðz‘Þ � N ð�Uðz0Þ; �Pðz0ÞÞ; A 2 R2M�2M;
CT 2 R1�2M, and with “�” meaning “distributed as.”

This completes the normal-mode representation of the

shallow ocean in state-space form; next, we consider aug-
menting this model with unknown parameters to create a

parametrically adaptive processor.

B. Augmented state-space models

The “parametrically adaptive” processor evolves from

the normal-mode representation by defining parameter sets

of interest. Variations in the ocean can be reflected, paramet-

rically, in a number of ways. For instance, sound-speed var-

iations are related to temperature changes especially in a

shallow ocean environment directly impacting the corre-

sponding dispersion relation of Eq. (2) that can be parametri-

cally captured by the horizontal wavenumber. Besides the

wavenumbers, modal variations can be reflected through the

measured pressure-field relations of Eq. (3) that can be para-

metrically captured by the modal coefficients of Eq. (4).

Therefore, we choose to use the modal coefficients as well

as the horizontal wavenumbers (individually) as the parame-

ters of interest in adapting to the changing shallow ocean

environment.

1. Case (i): Modal coefficients

The modal coefficients of Eq. (4) can be used to capture

modal function variations. In this case, we define the

unknown parameter vector as

hmðrs; zsÞ :¼ bmðrs; zsÞ; m ¼ 1;…;M;

and a new “augmented” state vector for the mth mode as

Umðz‘; hmÞ :¼ Umðz‘Þ ¼ ½/m1ðz‘Þ/m2ðz‘Þ j hmðz‘Þ�T :

With this choice of parameters (modal coefficients), the

augmented state equations for the mth mode become
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/m1ðz‘Þ ¼ /m2ðz‘�1Þ þ wm1ðz‘�1Þ;
/m2ðz‘Þ ¼ �/m1ðz‘�1Þ þ ð2��z2

‘j
2
z ðmÞÞ/m2ðz‘�1Þ

þ wm2ðz‘�1Þ;
hmðz‘Þ ¼ hmðz‘�1Þ þ�z‘whm

ðz‘�1Þ; (18)

where we have selected a discrete random walk model

[ _hmðzÞ ¼ whm
ðzÞ] based on first differences to capture the

variations of the modal coefficients with additive, zero-

mean, Gaussian noise of covariance Rwhm whm
.

Note that when we augment the unknown parameters

into the state vector to construct the parametrically adaptive
processor, then we assume that they are random (walks) with

our pre-computed initial values specified (initial conditions

or means) and their corresponding covariances used to bound

their uncertainty (2r confidence bounds).

More succinctly, for the mth mode, we can write

Umðz‘Þ ¼ Amðz‘�1; hÞUmðz‘�1Þ þ wmðz‘�1Þ (19)

or expanding

/mðz‘Þ
� � �
hmðz‘Þ

2
64

3
75 ¼

Amðz‘�1Þ j 0

� � �
0 j 1

2
64

3
75

/mðz‘�1Þ
� � �

hmðz‘�1Þ

2
64

3
75

þ
W/m
ðz‘�1Þ

� � �
Whm
ðz‘�1Þ

2
64

3
75; (20)

where W/m
� Nð0;RW/m W/m

Þ; Whm
� Nð0;RWhm Whm

Þ;
/mð0Þ � N ð�/mð0Þ;R/m/m

Þ; hmð0Þ � N ð�hmð0Þ;Rhmhm
Þ:

The corresponding nonlinear measurement model is

given by

pðrs; z‘Þ ¼
XM

m¼1

hmðz‘Þ/mðz‘Þ þ vðz‘Þ; ‘ ¼ 1;…; L;

(21)

with dispersion (sound-speed)

c z‘ð Þ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2
z mð Þ þ j2

r mð Þ
p ; m ¼ 1;…;M; ‘ ¼ 1;…;L:

(22)

To complete this representation, we combine all of the

modes and unknown parameters and, therefore, the state

transition is characterized by the underlying augmented

state-space model as

Uðz‘Þ ¼ Aðz‘�1; HÞUðz‘�1Þ þ wðz‘�1Þ;

and the measurement, on the other hand, is determined from

the nonlinear pressure-field measurement model,

pðrs; z‘Þ ¼ c½Uðz‘Þ; H� þ vðz‘Þ: (23)

Note that for this case the pressure-field is nonlinear in

the states (modal functions) and parameters (modal coeffi-

cients) since they are multiplicands and therefore lead to

non-Gaussian measurements.

2. Case (ii): Horizontal wavenumbers

The horizontal wavenumbers of Eq. (2) can be used to

capture sound-speed (temperature) variations. For this case,

we define the unknown parameter vector as

hmðzÞ :¼ jrðmÞ; m ¼ 1;…;M;

and a new “augmented”state vector as

Umðz‘; hmÞ :¼ Umðz‘Þ ¼ ½/m1ðz‘Þ/m2ðz‘Þjhmðz‘Þ�T :

With this choice of parameters (horizontal wavenumber),

the augmented state equations for the mth mode become

/m1 z‘ð Þ¼/m2 z‘�1ð Þþwm1 z‘�1ð Þ;

/m2 z‘ð Þ¼�/m1 z‘�1ð Þþ 2��z2
‘

x2

c2 z‘ð Þ
�h2

m z‘�1ð Þ

 ! !

�/m2 z‘�1ð Þþwm2 z‘�1ð Þ;
hm z‘ð Þ¼ hm z‘�1ð Þþ�z‘whm

z‘�1ð Þ; (24)

where we have again selected a discrete random walk model

[ _hmðzÞ ¼ whm
ðzÞ] to capture the variations of the horizontal

wavenumber with additive, zero-mean, Gaussian noise of co-

variance Rwhm whm
. Note that even though we know that theo-

retically the horizontal wavenumbers are constant for each

mode, we incorporate this stochastic representation due to

the uncertainty inherent in the measurements and the para-

metric model itself.

More succinctly, for the mth mode we can write

Umðz‘Þ ¼ Amðz‘�1; hÞUmðz‘�1Þ þ wmðz‘�1Þ; (25)

for

Am z‘�1; hð Þ

¼

0 1 j 0

�1 2��z2
‘

x2

c2 z‘ð Þ
� h2

m z‘�1ð Þ

 !
j 0

� � �
0 0 j 1

2
6666664

3
7777775
:

The corresponding measurement model is given by

pðrs; z‘Þ ¼
XM

m¼1

bmðrs; zs; hmðz‘ÞÞ/mðz‘Þ þ vðz‘Þ;

‘ ¼ 1;…; L; (26)

with

bmðrs; zs; hmÞ :¼ qH0ðhmðz‘ÞrsÞ/mðzsÞ; (27)

and dispersion (sound-speed)

c z‘; hmð Þ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

z mð Þ þ h2
m z‘ð Þ

q ; m ¼ 1;…;M;

‘ ¼ 1;…; L: (28)
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Here, the “combined” augmented model for this case leads

to both a nonlinear state and measurement space, that is,

Uðz‘; HÞ ¼ a½Uðz‘�1;HÞ� þ wðz‘�1Þ;
pðrs; z‘Þ ¼ c½Uðz‘;HÞ� þ vðz‘Þ: (29)

In this case, both the propagator and the pressure-field

measurements are nonlinear functions of the states (modes)

and unknown parameters (wavenumbers). Note that the

modal coefficients are also direct functions of the estimated

wavenumbers and are adapted simultaneously. Therefore,

this processor is clearly non-Gaussian, similar to the previ-

ous case.

It should be noted that the initial model parameters are

obtained from the prior solution of the BVP typically devel-

oped as part of the experimental design process and/or after

the experiment has been executed. Here, the initial “guesses”

at modal coefficients and modal functions themselves are

calculated based on the experimental conditions such as fre-

quencies, current-temperature-density (CTD), archival

sound-speed profiles (SSPs), boundary conditions, horizontal

wavenumber estimators (e.g., see Refs. 11 and 12 for more

details) to provide the input to the normal-mode BVP solu-

tions (SNAP,19 KRACKEN,20 SAFARI21) yielding the

required parameters. These parameters are then input to the

state-space, measurement, and noise/uncertainty models as

shown in Fig. 1.

This completes the section on the discrete state-space

representation of the shallow ocean acoustic (normal-mode)

propagation model that is embedded as a “forward prop-

agator” into the subsequent processors for signal

enhancement.

III. PROCESSORS

In this section, we briefly discuss the processors for our

shallow oceanic problem with details available.13 The basic

adaptive problem we pursue in this paper can now be defined

in terms of our mathematical models as:

GIVEN, [{p(rs, z‘)}, {c(z‘)}], a set of noisy pressure-

field and sound speed measurements varying in depth along

with the underlying state-space model of Eqs. (25), (26) and

(28) with unknown parameters {h(z‘)}, FIND the “best”

(minimum error variance) estimates (joint) of the modal

functions and parameters, that is, f/̂mðz‘Þg; fĥmðz‘Þg;
m ¼ 1;…;M and measurements fp̂ðrs; z‘Þg.

The solution to this problem lies in the joint state/pa-
rameter estimation problem, that is, defining the augmented
state vector,

Uðz‘; HÞ :¼
Uðz‘Þ
� � �

H

2
64

3
75;

and starting with the joint distribution applying Bayes’ theo-

rem, we obtain13

Pr U z‘;Hð ÞjP‘
� �
¼

Pr p rs; z‘ð ÞjU z‘;Hð Þ
� �

�Pr U z‘;Hð ÞjU z‘�1;Hð Þ
� �

Pr p rs; z‘ð ÞjP‘�1

� �
 !

�Pr U z‘�1;Hð ÞjP‘�1

� �
; (30)

where we have assumed conditional independence and defined

the set of measurements as P‘:¼ {p(rs, z1),…, p(rs, z‘)}.

Define the joint weighting function in terms of the likeli-

hood, transition, and evidence as

W z‘;Hð Þ

:¼
Pr p rs;z‘ð ÞjU z‘;Hð Þ
� �

�Pr U z‘;Hð ÞjU z‘�1;Hð Þ
� �

Pr p rs;z‘ð ÞjP‘�1

� �
 !

;

(31)

yielding the sequential Bayesian posterior distribution as

Pr½Uðz‘;HÞjP‘� ¼Wðz‘;HÞ � Pr½Uðz‘�1;HÞjP‘�1�: (32)

The processors for our non-Gaussian problem suite are the

UKF and PF. The UKF has been discussed elsewhere8,13 in

detail. Note that it is an alternative to the nonlinear or EKF proc-

essor applied successfully in many of the model-based ocean

acoustic applications.3–7 Like the EKF, the UKF is still re-

stricted to a unimodal distribution (single peak), but that distri-

bution need not be Gaussian. It also performs a linearization

(statistical), but not of the system dynamical model, but of an in-

herent nonlinear vector transformation requiring “sigma points”

which accurately characterize the underlying unimodal distribu-

tion. These points have been pre-calculated for the Gaussian

case.8 It has been shown that the UKF clearly outperforms the

EKF and its variants (iterated EKF, higher order EKFs, etc.) and

is more accurate and precise besides being much easier to

implement, since Jacobian matrices are no longer required.

FIG. 1. (Color online) Bayesian MBP

design. (a) Boundary solver for initial

parameters. (b) Propagator, measure-

ment and noise/uncertainty models. (c)

MBP. (d) Applications: localization,

enhancement (tracking), and inversion.
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A PF is a completely different approach to nonlinear fil-

tering in that it removes the restriction of additive Gaussian

noise sources and is clearly capable of characterizing multi-

modal distributions. In fact, it might be easier to think of the

PF as a histogram or kernel density-like estimator in the sense

that it is an empirical probability mass function (PMF) that

approximates the desired posterior distribution such that sta-

tistical inferences can easily be performed and statistics

extracted directly. Here, the idea is a radical change in think-

ing where we attempt to develop an empirical estimation of

the posterior distribution following a purely Bayesian

approach using Monte Carlo (MC) sampling theory as its ena-

bling foundation. As one might expect, the computational bur-

den of the PF is much higher than that of the Kalman filter,

since it must provide an estimate of the underlying state poste-

rior distribution component-by-component at each z‘-step

along with the fact that the number of samples to characterize

the posterior distribution is equal to the number of particles.

Here, we are concerned with the joint estimation problem

consisting of setting a prior for h and augmenting the state vec-

tor to solve the joint estimation problem as defined above in

Sec. II B thereby converting the parameter estimation problem

to one of optimal filtering. Thus, the PF estimates the weights

required to specify the posterior distribution, empirically, that

is,

P̂r U z‘;Hð ÞjP‘
� �

� 1

Np

XNp

i¼1

Ŵ i z‘;Hð Þ

� d U z‘;Hð Þ �Ui z‘;Hð Þð Þ: (33)

The approach we chose for our problem is to estimate

these weights based on the concept of importance sampling.13

Importance sampling is a technique to compute statistics with

respect to one distribution using random samples drawn from

another. It is a method of simulating samples from a proposal

or sampling (importance) distribution to be used to approxi-

mate a targeted distribution (joint posterior) by appropriate

weighting. For this choice, the weighting function is defined by

W z‘;Hð Þ :¼
Pr U z‘;Hð ÞjP‘
� �

q U z‘;Hð ÞjP‘
� � ; (34)

where q½�� is the proposed sampling or importance
distribution.

For the “sequential” case we have that the weighting

function becomes13

W z‘;Hð Þ

¼
Pr p rs; z‘ð ÞjU z‘;Hð Þ
� �

� Pr U z‘;Hð ÞjU z‘�1;Hð Þ
� �

q U z‘;Hð ÞjU z‘�1;Hð ÞP‘
� �

 !

�W z‘�1;Hð Þ: (35)

There are a variety of PF algorithms available, each

evolving by a particular choice of the sampling or impor-

tance distribution, but perhaps the simplest is the bootstrap
technique,13 which we apply to our problem. Here, the im-

portance distribution is selected as the transition prior, that

is,

q½Uðz‘;HÞjUðz‘�1;HÞP‘� ! Pr½Uðz‘;HÞjUðz‘�1;HÞ�;
(36)

and substituting into Eq. (35) we obtain

Wðz‘;HÞ ¼ Pr½pðrs; z‘ÞjUðz‘;HÞ� �Wðz‘�1;HÞ: (37)

Thus, we see that once the underlying posterior is

available, the estimates of important statistics can be

inferred directly. For instance, the maximum a posteriori
(MAP) estimate is simply found by locating a particular

particle /̂iðz‘Þ corresponding to the maximum of the PMF,

that is,

Ûiðz‘;HÞMAP ¼ max
i

P̂r½Uiðz‘;HÞjP‘�; (38)

while the conditional mean (CM) or, equivalently, the mini-

mum mean-squared error (MMSE) estimate is calculated by

integrating the posterior as

Ûi z‘;Hð ÞMMSE ¼
ð
Ui z‘;Hð Þ � P̂r Ui z‘;Hð ÞjP‘

� �
dz

� 1

Np

XNp

i¼1

Wi z‘;Hð Þ �Ui z‘;Hð Þ: (39)

For the bootstrap implementation, we need only draw

noise samples from the state and parameter distributions and

use the dynamic models above (normal-mode/random walk)

in Eq. (25) to generate the set of particles, fUiðz‘; HÞg
! fUiðz‘Þ;Hiðz‘Þg for i¼ 1,…,Np. That is, both sets of par-

ticles are generated from the augmented models (linear/non-

linear) for each individual case (adaptive modal coefficients

or adaptive wavenumbers) from

Uiðz‘; HÞ ¼
Aðz‘�1ÞUiðz‘�1Þ þ wiðz‘�1Þ

a½Uiðz‘�1; HÞ� þ wiðz‘�1Þ

½Case ðiÞ: modal coefficients�

½Case ðiiÞ: wavenumbers�;

(
(40)

while the likelihood is determined from the nonlinear pressure-field measurement model

pðrs; z‘Þ ¼ c½Uiðz‘; HÞ� þ vðz‘Þ: (41)

Assuming additive Gaussian noise the likelihood is given by
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Pr p rs; z‘ð ÞjUi z‘ð Þ
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pRvv

p exp � 1

2Rvv
p rs; z‘ð Þð

�

�c Ui z‘; Hð Þ½ �Þ2
o
: (42)

Thus, we estimate the posterior distribution using a se-

quential MC approach and construct a bootstrap PF using

the following steps:

Initialize : Uið0Þ; wi � Nð0;RwwÞ;
Wið0Þ ¼ 1=Np; i ¼ 1;…;Np;

Statetransition :

Uiðz‘;HÞ¼
Aðz‘�1ÞUiðz‘�1Þþwiðz‘�1Þ ½CaseðiÞ�

a½Uiðz‘�1;HÞ�þwiðz‘�1Þ ½Caseðii
�
�;

(

Likelihood probability : Pr½pðrs; z‘ÞjUiðz‘Þ� of Eq: ð42Þ;

Weights :

Wiðz‘;HÞ ¼Wiðz‘�1;HÞ�Pr½pðrs;z‘ÞjUiðz‘Þ�;

Normalize : W i z‘;Hð Þ ¼ Wi z‘; Hð ÞXNp

i¼1

Wi z‘; Hð Þ
;

Resample : ~Uiðz‘; HÞ ) Uiðz‘; HÞ;

Posterior :

P̂r½Uðz‘;HÞjP‘�¼
XNp

i¼1

W iðz‘;HÞ�dðUðz‘;HÞ�Uiðz‘;HÞÞ;

and

MAP estimate : Ûiðz‘; HÞMAP¼max
i

P̂r½Uiðz‘; HÞjP‘�;

MMSE estimate :

Ûi z‘; Hð ÞMMSE¼
1

Np

XNp

i¼1

Wi z‘; Hð ÞUi z‘; Hð Þ:

A detailed flow diagram of the PF (bootstrap) algo-

rithm is shown in Fig. 2 illustrating the prediction and

update steps along with a resampling algorithm to provide

convergence. More details can be found in Refs. 13 and

22–25.

IV. MODEL-BASED OCEAN ACOUSTIC PROCESSING

In this section, we discuss the development of the propa-

gators for the Hudson Canyon experiment performed in

1988 in the Atlantic with the primary goal of investigating

acoustic propagation (transmission and attenuation) using

continuous wave data.11,12 The Hudson Canyon is located

off the coast of New Jersey in the area of the Atlantic

Margin Coring project borehole 6010. The seismic and cor-

ing data are combined with sediment properties measured at

that site. Excellent agreement was determined between the

model and data, indicating a well-known, well-documented

shallow water experiment with bottom interaction and yield-

ing ideal data sets for investigating the applicability of a

MBP to measured ocean acoustic data. The experiment was

performed at low frequencies (50–600 Hz) in shallow water

of 73 m depth during a period of calm sea state as shown in

Fig. 3. A calibrated acoustic source was towed at roughly

36 m depth along the 73 m isobath radially to distances of

4–26 km. The ship speed was between 2 and 4 kn. The fixed

vertical hydrophone array consisted of 24 phones spaced

2.5 m apart, extending from the seafloor up to a depth of

�14 m below the surface. The CTD and SSP measurements

were made at regular intervals and the data were collected

under carefully controlled conditions in the ocean environ-

ment. The normalized horizontal wavenumber spectrum for

a 50 Hz temporal frequency is dominated by five modes

occurring at wavenumbers between 0.14 and 0.21 m–1 with

relative amplitudes increasing with increased wavenumber.

A SNAP19 simulation was performed and the results agree

quite closely, indicating a well-understood ocean

environment.

In order to construct the state-space propagator, we

require the set of parameters which were obtained from the

experimental measurements and processing (wavenumber

spectra). The horizontal wavenumber spectra were estimated

using synthetic aperture processing.11 Eight temporal fre-

quencies were employed: four on the inbound (75 Hz,

275 Hz, 575 Hz, 600 Hz) and four on the outbound (50 Hz,

175 Hz, 375 Hz, 425 Hz). In this application we will confine

our investigation to the 50 Hz case, which is well-

documented, and to horizontal ranges from 0.5 to 4 km. The

FIG. 2. (Color online) Bootstrap PF algorithm flow diagram for adaptive

ocean processing: prediction, update, and resampling.
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raw measured data were processed (sampled, corrected,

filtered, etc.) and supplied for this investigation. We used

a single snapshot of the pressure-field across the vertical

array.

A. Adaptive PF design: Modal coefficients

The design and development of the environmentally

adaptive PF proceeds through the following steps: (1) pre-

processing the raw experimental data, (2) solving the BVP19

to obtain initial parameter sets for each temporal frequency

(e.g., modal coefficients, wavenumbers, initial conditions,

etc.), (3) state-space forward propagator simulation of syn-

thetic data for PF analysis/design, (4) application to measured

data, and (5) PF performance analysis as shown in Fig. 4.

Pre-processing of the measured pressure-field data fol-

lows the usual pattern of filtering, outlier removal, and

Fourier transforming to obtain the complex pressure-field as

a function of depth along the array. This data along with ex-

perimental conditions (frequencies, CTD, SSPs, boundary

conditions, horizontal wavenumber estimators (see Ref. 12

for details) provide the input to the normal mode BVP solu-

tions (SNAP,19 KRACKEN,20 SAFARI21) yielding the out-

put parameters. These parameters are then used as input to

the state-space forward propagator (see Fig. 4) developed in

Sec. II.

The state-space propagator is then used to develop a set

of synthetic pressure-field data with higher resolution than

the original raw data (e.g., 46-element array rather than 23-

element at half-wave inter-element spacing). This set repre-

sents the “truth” data that can be investigated when “tuning”

the PF (e.g., number of particles, covariances, etc.). Once

tuned, the processors are applied directly to the measured

pressure-field data (23-elements) after re-adjusting some of

the processor parameters (covariances). Here, the perform-

ance metrics are estimated and processor performance ana-

lyzed. Since each run of the PF is a random realization, that

is, the process noise inputs are random, an ensemble of

results are estimated with its statistics presented. In this way,

we can achieve a detailed analysis of the processor perform-

ance prior to fielding and operational version. In this paper,

we constrain our discussion results to processing the noisy

experimental pressure-field measurements.12

We performed a series of “tuning” runs for both the

UKF and PF. We primarily adjusted the process noise covar-

iance matrix (Rww) for each of the modal functions and then

executed a 100 member ensemble of realizations using these

parameters. The PF was designed with the same parameters

and 1500 particles were used to characterize the posterior

PMF at each depth. Resampling13 was applied at every itera-

tion of the PF to avoid any potential degradation.

First, we investigate the enhancement capabilities of the

PF in estimating the pressure-field over a 100-member en-

semble shown in Fig. 5. The resulting figures show the aver-

aged PF estimates. We observe the raw data (DATA) as well

as both MAP estimates and CM estimates. Both estimators

FIG. 3. (Color online) Hudson Canyon

experiment geometry and structure. (a)

Source at 36 m depth and 0.5 km range,

50 Hz. (b) 23-element vertical hydro-

phone array. (c) Five modes support

the water column.

FIG. 4. (Color online) PF design/de-

velopment procedure. (a) Initial pa-

rameters/conditions. (b) Design runs.

(c) Ensemble runs.
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are capable of tracking the field quite well and even filter the

erratic measurements near the bottom of the channel. The

innovations or residuals (ERROR) are also shown in Fig. 5.

Both estimators are capable of tracking and enhancing the

pressure-field. Using classical performance metrics on the

innovations sequence (ERROR), the zero-mean whiteness

tests, both processors satisfy the criteria of unbiasedness (Z-
M: 6.2� 10–4< 4.9� 10–1 and uncorrelated innovations,

that is, <5% exceeding the bound (6.3%). The weighted

sum-squared residual (WSSR) test is also applied with satis-

factory results, that is, no samples exceed the threshold, indi-

cating a functionally “tuned” processor.13 The UKF

processor also produced reasonable results for the enhanced

pressure-field (not shown).

Ensemble mode tracking results are shown in Figs. 6

and 7 for each of the modal function estimators, the PF

(MAP/CM) and the UKF. In Fig. 6, we observe that the

performance of the PF (MAP/CM) appears to track the

modes quite well, especially compared to the UKF.

The PF estimators perform equivalently. Two of the modal

function estimates (first two) exhibit the largest errors

as shown in Fig. 7, while the final three functional esti-

mates are much better. It is interesting to note that the

modal coefficient estimates are constantly being adapted

(adjusted) by the processor throughout the runs, attesting

to the nonstationary nature of the ocean statistics as illus-

trated in Fig. 8.

We also illustrate the multimodal aspect of the oceanic

data by observing the modal function posterior probability

mass function (PMF) estimates for modes 1 and 5 in Fig. 9.

FIG. 5. (Color online) Raw/enhanced pressure-field (DATA) data from the

Hudson Canyon experiment using PF estimators: MAP, CM, and the corre-

sponding innovations (ERROR) sequence.

FIG. 6. (Color online) Modal function tracking for adaptive modal coefficient estimation: raw experimental data (DATA), UKF, MAP (circles) and CM

(squares) PFs.

1276 J. Acoust. Soc. Am. 138 (3), September 2015 J. V. Candy



It is clear from the plots that for each depth multiple peaks

appear in the posterior estimates. The pressure-field poste-

rior is better behaved, almost producing a near unimodal

posterior for the predicted field. Visualizing a peak at each

depth produces a “smooth” estimate (MAP) as shown in

Fig. 10. This completes the analysis of the Hudson Canyon

experimental data for the adaptive (modal coefficient) PF

processing performance.

FIG. 7. (Color online) Modal function tracking errors: modal model data (Model) and MAP (tracking error) PF error.

FIG. 8. (Color online) Adaptive modal coefficient parameter estimation data (MODEL) from the Hudson Canyon experiment using the MAP PF (parameter

estimate).

J. Acoust. Soc. Am. 138 (3), September 2015 J. V. Candy 1277



B. Adaptive PF design: Wavenumbers

As before in the modal coefficient case, we investigate

the enhancement capabilities of the PF in estimating

the pressure-field over a 100-member ensemble shown in

Fig. 11. Using 1500-particles, we see the raw hydrophone

data (dashed line) from the experiment as well as both MAP

estimates (circles) and CM estimates (dotted line with

circles). Both estimators appear to track the field quite well.

The corresponding innovations (residual) sequence is also

shown (diamonds). Classically, both estimators produced

satisfactory zero-mean/statistical whiteness tests as well as

the WSSR tests, indicating a “tuned” processor.8

The ensemble mode tracking results are shown in Fig. 12

for each of the modal function estimators, the PF (MAP/CM)

and the UKF. In Fig. 12, we observe that the performance of

the PF (MAP/CM) appears to track the modes quite well and

better than the UKF. The PF estimators perform equivalently.

FIG. 9. (Color online) PMF posterior

estimation (modes 1 and 5) surfaces

for experimental Hudson Canyon data

(particle vs time vs probability).

FIG. 10. (Color online) Pressure-field PMF estimation surface for experi-

mental Hudson Canyon data (particle vs time vs probability).

FIG. 11. (Color online) Raw pressure-field data/enhanced data (DATA)

from the Hudson Canyon experiment with a 23-element hydrophone vertical

array using PF estimators: MAP, CM, and the corresponding innovations

(ERROR) sequence.
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Two of the modal function estimates (first two) exhibit the

largest errors while the final three functional estimates are

much better. The root-mean-squared (modal tracking) error

for each mode is quite reasonable on the order of 10–5, again

confirming their performance. It is interesting to note that the

wavenumber estimates are constantly being adapted

(adjusted) by the processor throughout the runs, attesting to

the nonstationary nature of the ocean statistics. The ensemble

FIG. 12. (Color online) Modal func-

tion tracking for adaptive wavenumber

estimation: Hudson Canyon data

(MODEL) of a 23-element array,

UKF, MAP, and CM (squares) PFs.

FIG. 13. (Color online) Adaptive

wavenumber parameter estimates (pa-

rameter estimate) from the Hudson

Canyon 23-element array data

(MODEL) using the MAP PF.
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average wavenumber estimates are very reasonable: [0.206,

0.197, 0.181, 0.173, 0.142; (TRUE) 0.208, 0.199, 0.183,

0.175, 0.142]. The PF and CM ensemble estimates are very

close to the true values adapting to the changing ocean envi-

ronment, yet, still preserving wavenumber values on the aver-

age. On a single realization, the processors were capable of

predicting the correct values, but the ensemble results give a

better overall performance metric.

We also illustrate the multimodal aspect of the oceanic

data by observing the modal function posterior probability

PMF estimates for mode 5 illustrated in Fig. 13. It is clear

from the plots that for each depth multiple peaks appear in

the posterior estimates. The wavenumber PMF estimate cor-

responding to corresponding to mode 5 is shown in Fig. 14.

Again, we note the multiple, well-defined peaks in the poste-

rior distribution leading to the MAP parameter estimate.

The pressure-field posterior peaks over the span of the

water column are illustrated. Visualizing a peak at each

depth produces a “smooth” estimate (MAP) as shown in

Figs. 15 and 16. This completes the analysis of the synthe-

sized Hudson Canyon experiment and the PF processing

performance.

This completes the analysis of the performance of the

adaptive PF for both the modal coefficients and

wavenumbers. It is clear from these ensemble runs that the

PF is capable of parametrically adapting to the changing

shallow ocean environment in both these cases, providing

reasonable tracking estimates of the modal functions while

simultaneously estimating the associated pressure-field and

unknown parameters.

V. SUMMARY

In this paper, we have discussed the development of

environmentally adaptive processors capable of tracking

modes and enhancing the raw pressure-field measurements

obtained from a vertical hydrophone array in shallow water.

The parametric adaption was based on simultaneously esti-

mating either the modal coefficients or the horizontal wave-

numbers along with the modes and pressure-field as the

environmental parameters of interest. These wavenumber

parameters were more challenging from a processor design

perspective because of their increased sensitivity to environ-

mental change compared to the modal coefficients. We

chose a Bayesian sequential design because of the varying

nature of the shallow ocean and applied a normal-mode

model in state-space form to create a forward propagator.

The algorithms applied were the UKF and the PF, both mod-

ern approaches applied to this problem. We compared their

performance and found slightly better results for the PF over

a 100-member ensemble.

Much more effort must be applied to gain a full under-

standing of applying these approaches to usual ocean acous-

tic problems (localization, tracking, inversion, etc.). Our

future efforts will be focused on extending the processors to

those problems.
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